PROBABILITY, SIGNALS \& SVSTEMS

bY: RUAA Shallal anooz

OBJECTIVE OF COURSE

- To develop understanding of fundamentals of probability including various probability distributions and laws of statistics and elementary statistical techniques to effectively analyze scientific data.
svilabus

Weeks	Contents
$1-2$	Introduction: Set Theory - Basic concepts of probability
$3-4$	Probability types:
5	Conditional probability - Independent events

REFERENCES

- Introduction to Statistics by Walpole
- Modern Elementary Statistics by John E. Freund.
- Probability and its engineering uses by T.C.Fry.
- Elementary Statistics by P. A. Games \& G. R. Klaro.
- Probability and Statistics by Nestollor, Rourke and Thomas.
- Introduction to Signals and Systems by Oppeheim.
- Signals and Systems- An Introduction by Leslie Balme.

INTRODUCTION TO SET THEORY

- A Set is any well defined collection of "objects."
- The elements of a set are the objects in a set.
- Usually we denote sets with upper-case letters, elements with lower-case letters. The following notation is used to show set membership
- $x \in \mathrm{~A} \quad$ means that x is a member of the set A
- $x \notin \mathrm{~A} \quad$ means that x is not a member of the set A .

WAYS OF DESCRIBING SETS

- List the elements

$$
A=\{1,2,3,4,5,6\}
$$

- Give a verbal description
"A is the set of all integers from 1 to 6 , inclusive"
- Give a mathematical inclusion rule

$$
\mathrm{A}=\{\text { Integers } x \mid 1 \leq x \leq 6\}
$$

SOME SPECIAL SETS

- The Null Set or Empty Set. This is a set with no elements, often symbolized by

- The Universal Set or Sample set. This is the set of all elements currently under consideration and is often symbolized by
$\Omega \quad$ OR $\quad S$

VENN DIAGRAMS

A Venn Diagram shows events as potentially intersecting circles or closed surfaces.
e.g., $R=$ Republican
$\mathrm{F}=$ Female

MEMBERSHIP RELATIONSHIPS

Subset.

$A \subset B$ "A is a subset of B "

- We say "A is a subset of B " if all the elements of A are also elements of B. The notation for subset is very similar to the notation for "less than or equal to," and means, in terms of the sets, "included in or equal to."

COMBINING SETS - SET UNION

$A \cup B$

"A union B " is the set of all elements that are in A , or B , or both.

This is similar to the logical "or" operator.

COMBINING SETS - SET INTERSECTION

$A \cap B$

"A intersect B" is the set of all elements that are in both A and B.
This is similar to the logical "and"

SET COMPLEMENT

$\bar{A}=A^{c}$

- "A complement," or "not A " is the set of all elements not in A .
- The complement operator is similar to the logical not, and is reflexive, that is,

$$
\overline{\bar{A}}=A
$$

SET DIFFERENGE [SUBTRACTION] $A-B$

- The set difference "A minus \mathbf{B} " is the set of all elements that are in A , and not in B , so

$$
A-B=A \cap \bar{B}
$$

MUTUALLY EXCLUSIVE SET [DISJOINT]

- Two sets A and B are mutually exclusive (or disjoint) if $\mathrm{A} \cap B=\varnothing$

Mutually Exclusive Event

PARTITION

- A collection of sets $A_{1}, A_{2}, \ldots, A_{n}$ is a Partition of \boldsymbol{S} if

1. They are disjoint .
2. $A_{1} \cup A_{2} \cup \ldots \cup A_{n}=\boldsymbol{S}$

DE MORGAN'S LAW

- Theorem : De Morgan's law

$$
\begin{aligned}
& (A \cup B)^{c}=A^{c} \cap B^{c} \\
& (A \cap B)^{c}=A^{c} \cup B^{c}
\end{aligned}
$$

Ruaa Shallal Abhas

EXAMPLES

$$
\begin{array}{ll}
\Omega=\{1,2,3,4,5,6\} & \\
A=\{1,2,3\} & B=\{3,4,5,6\} \\
A \cap B=\{3\} \quad A \cup B=\{1,2,3,4,5,6\} \\
B-A=\{4,5,6\} & \bar{B}=\{1,2\}
\end{array}
$$

DISTRIBUTIVE LAW

- Theorem : Distributive law
- $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
- $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

SOME TEST QUESTIONS

$$
A \cup \varnothing=?
$$

SOME TEST QUESTIONS

SOME TEST QUESTIONS

Ruaa Shallal Abbas

SOME TEST QUESTIONS

$$
\mathrm{A}-\overline{\mathrm{A}}=?
$$

SOME TEST QUESTIONS

SOME TEST QUESTIONS

$$
\mathrm{A} \cup \Omega=\text { ? }
$$

SOME TEST QUESTIONS

$A \cap \Omega=?$

SOME TEST QUESTIONS

If $\mathrm{A} \subset \mathrm{B}$ then

$$
A \cap B=?
$$

SOME TEST QUESTIONS

If $\mathrm{A} \subset \mathrm{B}$ then

$$
A \cup B=?
$$

