AL FURAT AL AWSAT TECHNICAL UNIVERSITY NAJAF COLLEGE OF TECHNOLOGY DEPARTMENT OF AVIONICS ENGINEERING

DIGITAL SIGNAL PROCESSING 3rd YEAR

BY

RUAA SHALLAL ANOOZ

PERIODIC FUNCTIONS

A function $f(\theta)$ is periodic if it is defined for all real θ and if there is some positive number,

 2π

Ruaa Shallal Al

 $f(\theta)$ be a periodic function with period

The function can be represented by a trigonometric series as:

SOME SPECIAL CASES OF TRIGONOMETRIC INTEGRAL THAT USED IN THE FOURIER SERIES

- 1. $\int_0^{2\pi} \sin(nt) dt = 0$ where n is any integer number
- 2. $\int_0^{2\pi} \cos(nt) dt = 0$ where n is any integer number doesn't equal zero
- 3. $\int_0^{2\pi} \sin(nt) \cos(mt) dt = 0$ where n, m are any integer numbers
- 4. $\int_0^{2\pi} \sin(nt) \sin(mt) dt = 0$ where m is not equal the integer number n or -n
- 5. $\int_0^{2\pi} (\sin(mt))^2 dt = \pi$ where m = n and it is not equal zero
- 6. $\int_0^{2\pi} \cos(nt) \cos(mt) dt = 0$ where m is not equal the integer number n or -n

Ruaa Shallal Ab

7. $\int_0^{2\pi} (\cos(mt))^2 dt = \pi$ where m = n and it is not equal zero

We want to determine the coefficients, a_0 , a_n and b_n

1. Determine a_0

Integrate both sides of (1) from $-\pi$ to π

$$\int_{-\pi}^{\pi} f(\theta) d\theta = \int_{-\pi}^{\pi} \left[a_0 + \sum_{n=1}^{\infty} a_n \cos n \theta + \sum_{n=1}^{\infty} b_n \sin n \theta \right] d\theta$$
$$\int_{-\pi}^{\pi} f(\theta) d\theta = \int_{-\pi}^{\pi} a_0 d\theta + \int_{-\pi}^{\pi} \left(\sum_{n=1}^{\infty} a_n \cos n \theta \right) d\theta + \int_{-\pi}^{\pi} \left(\sum_{n=1}^{\infty} b_n \sin n \theta \right) d\theta$$

$$\int_{-\pi}^{\pi} f(\theta) \, d\theta = \int_{-\pi}^{\pi} a_0 \, d\theta + 0 + 0$$

$$\int_{-\pi}^{\pi} f(\theta) \, d\theta = 2\pi a_0 + 0 + 0$$

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) \, d\theta$$

 a_0 is the average (dc) value of the function, $f(\theta)$

You may integrate both sides of (1) from 0 to 2π instead.

$$\int_0^{2\pi} f(\theta) \, d\theta = \int_0^{2\pi} \left[a_0 + \sum_{n=1}^{\infty} a_n \cos n \, \theta + \sum_{n=1}^{\infty} b_n \sin n \, \theta \right] d\theta$$

It is alright as long as the integration is performed over one period.

$$\int_0^{2\pi} f(\theta) \, d\theta = \int_0^{2\pi} a_0 \, d\theta + \int_0^{2\pi} \left(\sum_{n=1}^\infty a_n \cos n \, \theta \right) d\theta + \int_0^{2\pi} \left(\sum_{n=1}^\infty b_n \sin n \, \theta \right) d\theta$$

0

$$\int_0^{2\pi} f(\theta) \, d\theta = \int_0^{2\pi} a_0 \, d\theta + 0 + 0$$

$$\int_0^{2\pi} f(\theta) d\theta = 2\pi a_0 + 0 + 0$$

$$a_0 = \frac{1}{2\pi} \int_0^{2\pi} f(\theta) \, d\theta$$

2. Determine a_n

Multiply (1) by $\cos m\theta$ and then Integrate both sides from $-\pi$ to π

Ruaa Shallal Ab

bas

$$\int_{-\pi}^{\pi} f(\theta) \cos m \, \theta \, d\theta = \int_{-\pi}^{\pi} \left[a_0 + \sum_{n=1}^{\infty} a_n \cos n \, \theta + \sum_{n=1}^{\infty} b_n \sin n \, \theta \right] \cos m \, \theta \, d\theta$$

Let us do the integration on the right-hand-side one term at a time.

First term,
$$\int_{-\pi}^{\pi} a_0 \cos m \,\theta \,d\theta = 0$$

Second term, $\int_{-\pi}^{\pi} \sum_{n=1}^{\infty} a_n \cos n \,\theta \cos m \,\theta \,d\theta$

Therefore, $\int_{-\pi}^{\pi} f(\theta) \cos m \, \theta \, d\theta = a_n \pi$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \cos m \, \theta \, d\theta \quad n = m$$

3. Determine b_n

Multiply (1) by $\sin m\theta$ and then Integrate both sides from $-\pi$ to π

$$\int_{-\pi}^{\pi} f(\theta) \sin m \, \theta \, d\theta = \int_{-\pi}^{\pi} \left[a_0 + \sum_{n=1}^{\infty} a_n \cos n \, \theta + \sum_{n=1}^{\infty} b_n \sin n \, \theta \right] \sin m \, \theta \, d\theta$$

Let us do the integration on the right-hand-side one term at a time.

Ruaa Shallal Abbas

First term,
$$\int_{-\pi}^{\pi} a_0 \sin m \,\theta \,d\theta = 0$$

Second term, $\int_{-\pi}^{\pi} \sum_{n=1}^{\infty} a_n \cos n \,\theta \sin m \,\theta \,d\theta = 0$
Third term, $\int_{-\pi}^{\pi} \sum_{n=1}^{\infty} b_n \sin n \,\theta \sin m \,\theta \,d\theta = b_m \pi$
herefore,

$$\int_{-\pi}^{\pi} f(\theta) \sin m \, \theta d\theta = b_m \pi$$

$$b_m = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \sin m \, \theta \, d\theta \quad m = n$$

Τ

Ruaa Shallal Abbas

The coefficients are:

$$a_{0} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) d\theta$$
$$a_{m} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \cos m \theta d\theta \quad m = 1, 2, \cdots$$
$$b_{m} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \sin m \theta d\theta \quad m = 1, 2, \cdots$$

We can write *n* in place of *m*:

$$a_{0} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) d\theta$$
$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \cos n \theta d\theta \quad n = 1, 2, \cdots$$
$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \sin n \theta d\theta \quad n = 1, 2, \cdots$$

The integrations can be performed from 0 to 2π instead.

Ruaa Shallal Abbas

$$a_{0} = \frac{1}{2\pi} \int_{0}^{2\pi} f(\theta) d\theta$$
$$a_{n} = \frac{1}{\pi} \int_{0}^{2\pi} f(\theta) \cos n\theta d\theta \quad n = 1, 2, \cdots$$
$$b_{n} = \frac{1}{\pi} \int_{0}^{2\pi} f(\theta) \sin n\theta d\theta \quad n = 1, 2, \cdots$$

 πJ_0

Find the Fourier series of the following periodic function.

Ruaa Shallal Abbas

 $f(\theta) = A$ when $0 < \theta < \pi$ = -A when $\pi < \theta < 2\pi$

 $f(\theta + 2\pi) = f(\theta)$

0

Ruaa Shallal Abbas

Sol:

$$a_0 = \frac{1}{2\pi} \int_0^{2\pi} f(\theta) d\theta$$

= $\frac{1}{2\pi} \left[\int_0^{\pi} f(\theta) d\theta + \int_{\pi}^{2\pi} f(\theta) d\theta \right]$
= $\frac{1}{2\pi} \left[\int_0^{\pi} A d\theta + \int_{\pi}^{2\pi} -A d\theta \right]$
= 0

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(\theta) \cos n\,\theta d\theta$$
$$= \frac{1}{\pi} \left[\int_0^{\pi} A \cos n\,\theta d\theta + \int_{\pi}^{2\pi} (-A) \cos n\,\theta d\theta \right]_{\pi}^{\pi}$$
$$= \frac{1}{\pi} \left[A \frac{\sin n\,\theta}{n} \right]_0^{\pi} + \frac{1}{\pi} \left[-A \frac{\sin n\,\theta}{n} \right]_{\pi}^{2\pi} = 0$$

 \bigcirc

0

0

Ruaa Shallal Abbas

$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(\theta) \sin n \, \theta \, d\theta$$

$$= \frac{1}{\pi} \left[\int_0^{\pi} A \sin n \, \theta \, d\theta + \int_{\pi}^{2\pi} (-A) \sin n \, \theta \, d\theta \right]$$

$$= \frac{1}{\pi} \left[-A \frac{\cos n \, \theta}{n} \right]_0^{\pi} + \frac{1}{\pi} \left[A \frac{\cos n \, \theta}{n} \right]_{\pi}^{2\pi}$$

$$= \frac{A}{n\pi} \left[-\cos n \, \pi + \cos 0 + \cos 2 n \pi - \cos n \, \pi \right]$$

$$b_n = \frac{A}{n\pi} \left[-\cos n \, \pi + \cos 0 + \cos 2 n \pi - \cos n \, \pi \right]$$

$$= \frac{A}{n\pi} \left[1 + 1 + 1 + 1 \right]$$

$$= \frac{4A}{n\pi} \text{ when n is odd}$$

$$b_n = \frac{A}{n\pi} \left[-\cos n \, \pi + \cos 0 + \cos 2 n \pi - \cos n \, \pi \right]$$

$$= \frac{A}{n\pi} \left[-1 + 1 + 1 - 1 \right]$$

$$= 0 \text{ when n is even}$$

0

Therefore, the corresponding Fourier series is

$$\frac{4A}{\pi}\left(\sin\theta + \frac{1}{3}\sin 3\theta + \frac{1}{5}\sin 5\theta + \frac{1}{7}\sin 7\theta + \cdots\right)$$

In writing the Fourier series we may not be able to consider infinite number of terms for practical reasons. The question therefore, is – how many terms to consider?

When we consider 4 terms as shown in the previous slide, the function looks like the following.

When we consider 6 terms, the function looks like the following.

When we consider 8 terms, the function looks like the following.

Ruaa Shallal Abbas

0

When we consider 12 terms, the function looks like the following.

