PROBABILITY, SIGNALS \& SVSTEMS

bY: RUAA Shallal anooz

- Experiment : any process or procedure for which more than one outcome is possible.
- Random Experiment: is a process by which we observe something uncertain.
- Outcome: is a result of a random experiment.
- Sample Space (\boldsymbol{S}): is a set consisting of all of the possible experimental outcomes.

EXAMPLES

- Random Experiment toss a coin; the sample space is
$S=\{$ head, tail $\}$ or $\{\mathrm{H}, \mathrm{T}\}$

- A die toss, what are the results of this experiment? Or what is the sample space of this experiment?

Sol: the results are or the sample space is
$S=\{1,2,3,4,5,6\}$

EXAMPLES

- If two dice are rolled (or, equivalently, if one die is rolled twice), the sample space is shown in Figure 1.2. $\mathrm{S}=$ sample space outcomes ${ }^{\text {number of }}$ iterations $=6^{2}=36$ outcomes

FIGURE 1.2 • Sample space for rolling two dice

 $S=2^{3}=8$ outcomes
$\mathrm{S}=\{(\mathrm{H}, \mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{H}, \mathrm{T}),(\mathrm{H}, \mathrm{T}, \mathrm{H}),(\mathrm{H}, \mathrm{T}, \mathrm{T}),(\mathrm{T}, \mathrm{H}, \mathrm{H}),(\mathrm{T}, \mathrm{H}, \mathrm{T}),(\mathrm{T}, \mathrm{T}, \mathrm{H}),(\mathrm{T}, \mathrm{T}, \mathrm{T})\}$

EVENT

- An event \boldsymbol{A} is a subset of the sample space \boldsymbol{S}. The probability of an event $A, P(A)$, is obtained by summing the probabilities of the outcomes contained within the event \boldsymbol{A}.
- An event is said to occur if one of the outcomes contained within the event occurs.

FOR EXAMPLE, ROLL ONE DIE.
$\operatorname{EVEN}=\{2,4,6\}$
$\mathrm{ODD}=\{1,3,5\}$
GREATER THAN $6=E M P T Y$ SET $=\phi$

COMPLEMENTS OF EVENTS

- Complements of Events

The event A^{\prime}, the complement of event \boldsymbol{A}, is the event consisting of everything in the sample space S that is not contained within the event \boldsymbol{A}. In all cases

$$
P(A)+P\left(A^{\prime}\right)=1
$$

- Events that consist of an individual outcome are sometimes referred to as elementary events or simple events

PROBABIIITY

- The probability is the measure of the occurrence of an event.

$$
\mathrm{P}(\text { event })=\frac{\text { the number of the event occure }}{\text { the sample space }}
$$

EXAMPLE

Example: you roll a fair die. What is the probability of $\mathrm{A}=\{1,5\}$?
Sol: the die is fair, which means that all six possible outcomes are equally likely, i.e.,

$$
\begin{aligned}
& P(\{1\})=P(\{2\})=\ldots=P(\{6\})=\frac{1}{6} \\
& P(A)=P(\{1\})+P(\{5\}) \\
& \\
& =\frac{2}{6}=\frac{1}{3}
\end{aligned}
$$

EXAMPLE

- Example:- two fair dice, are thrown find the following:
- $A=\{$ the sum of the scores of two dice is equal to 6$\}$ $=\{(1,5),(2,4),(3,3),(4,2),(5,1)\}$

A sum of 6 will be obtained with two fair dice roughly 5 times out of 36 on average, that is, on about 14% of the throws.
$P(A)=\frac{1}{36}+\frac{1}{36}+\frac{1}{36}+\frac{1}{36}+\frac{1}{36}=\frac{5}{36}$

EXAMPLE

FI G URE 1.19 •

- $\mathrm{B}=\{$ at least one of the two dice records a 6$\}$
$=\{(1,6),(2,6),(3,6),(4,6),(5,6),(6,6)$, $(6,5),(6,4),(6,3),(6,2),(6,1)\}$

AXIOMS OF PROBABILITY

- Property $1.0 \leq \operatorname{Pr}(A) \leq 1$
- Property 2. $\mathrm{P}(\mathrm{S})=1$

- Property 3. $\mathrm{P}(\mathrm{A})+\mathrm{P}(\overline{\mathrm{A}})=\mathrm{P}(\mathrm{S}) \longrightarrow \mathrm{P}(\overline{\mathrm{A}})=1-\mathrm{P}(\mathrm{A})$
- Property 4. $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$ when A and B are disjoint or mutually exclusive.

AXIOMS OF PROBABILITY

$P(\emptyset)=0$,
$\emptyset:$ empty

$$
P(\emptyset)=P\left(S^{c}\right)=1-P(S)=1-1=0 .
$$

AXIOMS OF PROBABILITY

$$
\begin{aligned}
& P(A-B)=P(A)-P(A \cap B) \\
& \begin{array}{l}
A=(A \cap B) \cup(A-B) \\
(A \cap B) \text { and }(A-B) \text { are disjoint. } \\
P(A)=P((A \cap B) \cup(A-B)) \\
\quad=P(A \cap B)+P(A-B)
\end{array}
\end{aligned}
$$

COMBINATIONS OF EVENTS

- Intersections of Events

The event $A \cap B$ is the intersection of the events \boldsymbol{A} and \boldsymbol{B} and consists of the outcomes that are contained within both events \boldsymbol{A} and \boldsymbol{B}. The probability of this event, $P(A \cap B)$, is the probability that both events \boldsymbol{A} and \boldsymbol{B} occur simultaneously.

- A sample space S consists of 9 outcomes

$$
\begin{aligned}
& P(A)=0.01+0.07+0.19=0.27 \\
& P(B)=0.07+0.19+0.04+0.14+0.12=0.56 \\
& P(A \cap B)=0.07+0.19=0.26
\end{aligned}
$$

FIGURE $1.27 \bullet$ The event $A \cap B$

INTERSECTIONS OF EVENTS

FIGURE 1.29 • The event $A \cap B$

$$
\begin{aligned}
& P\left(A^{\prime} \cap B\right)=0.04+0.14+0.12=0.30 \\
& P\left(A \cap B^{\prime}\right)=0.01 \\
& P(A \cap B)+P\left(A \cap B^{\prime}\right)=0.26+0.01=0.27=P(A) \\
& P(A \cap B)+P\left(A^{\prime} \cap B\right)=0.26+0.30=0.56=P(B)
\end{aligned}
$$

INTERSECTIONS OF EVENTS

$\square P(A \cap B)+P\left(A \cap B^{\prime}\right)=P(A)$

$$
P(A \cap B)+P\left(A^{\prime} \cap B\right)=P(B)
$$

- Mutually Exclusive Events

Two events \boldsymbol{A} and \boldsymbol{B} are said to be mutually exclusive if $A \cap B=\varnothing$ so that they have no outcomes in common.

INTERSECTIONS OF EVENTS

UMIOMS OF EVENTS

- The event $A \cup B$ is the union of events \boldsymbol{A} and \boldsymbol{B} and consists of the outcomes that are contained within at least one of the events \boldsymbol{A} and \boldsymbol{B}. The probability of this event, $P(A \cup B)$, is the probability that at least one of the events \boldsymbol{A} and \boldsymbol{B} occurs.

UNIONS OF EVENTS

- Notice that the outcomes in the event $A \cup B$ can be classified into three kinds:

1. in event A but not in event B
2. in event B but not in event A
3. in both events A and B
$P(A \cup B)=P\left(A \cap B^{\prime}\right)+P\left(A^{\prime} \cap B\right)+P(A \cap B)$

UNIOMS OF EVENTS

$\square P\left(A \cap B^{\prime}\right)=P(A)-P(A \cap B)$
$P\left(A^{\prime} \cap B\right)=P(B)-P(A \cap B)$
$\square P(A \cup B)=P(A)+P(B)-P(A \cap B)$
\square If the events A and B are mutually exclusive so that
$P(A \cap B)=0$, then $P(A \cup B)=P(A)+P(B)$

Riaa Shalal Abhas

UNIONS OF EVENTS

- Simple results concerning the unions of events

$$
\begin{aligned}
& (A \cup B)^{\prime}=A^{\prime} \cap B^{\prime} \\
& (A \cap B)^{\prime}=A^{\prime} \cup B^{\prime} \\
& A \cup B=B \cup A \\
& A \cup A=A \\
& A \cup S=S \\
& A \cup \varnothing=A \\
& A \cup A^{\prime}=S \\
& A \cup(B \cup C)=(A \cup B) \cup C
\end{aligned}
$$

$$
\text { FI G URE } 1.31 \bullet
$$

$$
A \subset B
$$

EXAMPLE

- Television Set Quality

A company that manufactures television sets performs a final quality check on each appliance before packing and shipping it.
The quality check has an evaluation of the quality of the picture and the appearance. Each of the two evaluations is graded as Perfect (P), Good (G), Satisfactory (S), or Fail (F). Find the probability of the following:

				S
(P, P)	(P, G)	(P, S)	(P, F)	
0.140	0.102	0.157	0.007	
(G, P)	(G, G)	(G, S)	(G, F)	
0.124	0.141	0.139	0.012	
(S, P)	(S, G)	(S, S)	(S, F)	
0.067	0.056	0.013	0.010	
(F, P)	(F, G)	(F, S)	(F, F)	
0.004	0.011	0.009	0.008	

FIGURE $1.38 \bullet$
Probability values for television set example

EXAMPLE

$\mathrm{A}=\mathrm{An}$ appliance that fails on either of the two evaluations and that score an evaluation of Satisfactory on both accounts will not be shipped.
$\mathrm{A}=\{$ an appliance cannot be shipped $\}$
$=\{(F, P),(F, G),(F, S),(F, F),(P, F),(G, F),(S, F),(S, S)\}$
$P(A)=0.074$

About 7.4% of the television sets will fail the quality check.

FIGURE 1.39°
Event A : appliance not shipped

EXAMPLE

$B=\{$ picture satisfactory or fail $\}$

$$
P(B)=0.178
$$

(P, P)	(P, G)	(P, S)	(P, F)
0.140	0.102	0.157	0.007
(G, P)	(G, G)	(G, S)	(G, F)
0.124	0.141	0.139	0.012
$B_{(S, P)}$	(S, G)	(S, S)	(S, F)
0.067	0.056	0.013	0.010
(F, P)	(F, G)	(F, S)	(F, F)
0.004	0.011	0.009	0.008

FIGURE $1.40 \bullet$
Event B : picture satisfactory or fail

EXAMPLE

$A \cap B=\{$ Not shipped and the picture satisfactory or fail $\}$

$$
P(A \cap B)=0.055
$$

FIGURE $1.41 \bullet$
Event $A \cap B$

EXAMPLE

$A \cup B=\{$ the appliance was either not shipped or the picture was evaluated as being either Satisfactory or Fail \}

$$
P(A \cup B)=0.197
$$

FIGURE 1.42 •
Event $A \cup B$

EXAMPLE

$P\left(A \cap B^{\prime}\right)=\{$ Television sets that have a picture evaluation of either Perfect or Good but that cannot be shipped \}

$$
P\left(A \cap B^{\prime}\right)=0.019
$$

Notice

$$
\begin{aligned}
P(A \cap B)+P\left(A \cap B^{\prime}\right) & =0.055+0.019 \\
& =0.074 \\
& =P(A)
\end{aligned}
$$

FI G URE $1.43 \bullet$
Event $A \cap B^{\prime}$

EXAMPLE

Example:- One die rolling, Find the following:
$\boldsymbol{A}=\{$ an even score is obtained from a roll of a die $\}$
$\boldsymbol{B}=\{$ the numbers that are greater than 3$\}$

$$
\begin{aligned}
& \boldsymbol{A}=\{2,4,6\} \quad \boldsymbol{B}=\{4,5,6\} \\
& \text { then } \\
& \qquad A \cap B=\{4,6\} \text { and } A \cup B=\{2,4,5,6\} \\
& \\
& \qquad P(A \cap B)=\frac{2}{6}=\frac{1}{3} \text { and } P(A \cup B)=\frac{4}{6}=\frac{2}{3}
\end{aligned}
$$

EXAMPLE

Example:- For two dice rolling, find the following $\boldsymbol{A}=\{$ the sum of the scores is equal to 6$\}$,
$\boldsymbol{A}=\{(1,5),(2,4),(3,3),(4,2),(5,1)\}$
$\boldsymbol{B}=\{$ at least one of the two dice records a 6$\}$
$P(A)=5 / 36$ and $P(B)=11 / 36$
\boldsymbol{A} and \boldsymbol{B} are mutually exclusive $=>$
$A \cap B=\varnothing$ and $P(A \cap B)=0$

$$
P(A \cup B)=\frac{16}{36}=\frac{4}{9}=P(A)+P(B)
$$

EXAMPLE

- One die is red and the other is blue \longrightarrow (red, blue).
$\boldsymbol{A}=\{$ an even score is obtained on the red die \}

FIGURE $1.44 \bullet$
Event A : even score on red die

EXAMPLE

$\boldsymbol{B}=\{$ an even score is obtained on the blue die \}

FI G URE $1.45 \bullet$ Event B : even score on blue die

$(1,1)$	$B_{(1,2)}^{(1,3)}(1,4) \quad \square$				
1/36	$1 / 36$	1/36	1/36	1/36	$1 / 36$
$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$
1/36	136	1/36	1/36	1/36	1/36
$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$
1/36	1/36	1/36	1/36	1/36	1/36
$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$
1/36	1/36	1/36	1/36	1/36	1/36
$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$	$(5,6)$
1/36	$1 / 36$	1/36	1/36	1/36	1/36
$(6,1)$	$(6,2)$	$(6,3)$	(6, 4)	$(6,5)$	$(6,6)$
1/36	136	1/36	1/36	1/36	1/36

EXAMPLES

FIGURE 1.46 •
$A \cap B=\{$ both dice have even Event $A \cap B$ scores \}

$$
P(A \cap B)=\frac{9}{36}=\frac{1}{4}
$$

$(1,1)$	B		$(1,4)$	$(1,5)$	$(1,6)$
	$(1,2)$	$(1,3)$			
1/36	1/36	1/36	1/36	1/36	1/36
$A_{(2,1)}$	(2, 2)	$(2,3)$	(2, 4)	$(2,5)$	$(2,6)$
1/36	1136	1/36	136	$1 / 36$	136
$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	(3, 5)	$(3,6)$
1/36	1/36	1/36	1/36	1/36	1/36
$(4,1)$	(4, 2)	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$
1/36	136	1/36	$1 / 36$	1/36	1/36
$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$	$(5,6)$
1/36	1/36	1/36	1/36	1/36	1/36
$(6,1)$	$(6,2)$	$(6,3)$	$(6,4)$	$(6,5)$	$(6,6)$
1/36	1/36	1/36	1/36	1/36	1/36

EXAMPLES

FIGURE 1.47 Event $A \cup B$
$A \cup B=\{$ at least one die has an even score \}

$$
P(A \cup B)=\frac{27}{36}=\frac{3}{4}
$$

$\begin{gathered} (1,1) \\ 1 / 36 \end{gathered}$	$\begin{array}{\|c\|} \hline \\ \hline \end{array}$	$\begin{gathered} (1,3) \\ 1 / 36 \end{gathered}$	$\begin{gathered} (1,4) \\ 136 \end{gathered}$	$\begin{gathered} (1,5) \\ 1 / 36 \end{gathered}$	$\begin{gathered} (1,6) \\ 1 / 36 \end{gathered}$
$A_{(2,1)}$	$\begin{gathered} (2,2) \\ 1 / 36 \end{gathered}$	$\begin{gathered} (2,3) \\ 1 / 36 \end{gathered}$	$\begin{gathered} (2,4) \\ 1 / 36 \end{gathered}$	$\begin{gathered} (2,5) \\ 1 / 36 \end{gathered}$	$\begin{gathered} (2,6) \\ 1 / 36 \end{gathered}$
$(3,1)$ $1 / 36$	$\begin{gathered} (3,2) \\ 136 \end{gathered}$	$\begin{gathered} (3,3) \\ 1 / 36 \end{gathered}$	$\begin{aligned} & (3,4) \\ & 1 / 36 \end{aligned}$	$\begin{gathered} (3,5) \\ 1 / 36 \end{gathered}$	$\begin{gathered} (3,6) \\ 1 / 36 \end{gathered}$
$(4,1)$ $1 / 36$	$(4,2)$	$\begin{gathered} (4,3) \\ 1 / 36 \end{gathered}$	$\begin{gathered} (4,4) \\ 1 / 36 \end{gathered}$	$\begin{gathered} (4,5) \\ 1 / 36 \end{gathered}$	$\begin{gathered} (4,6) \\ 1 / 36 \end{gathered}$
$(5,1)$ $1 / 36$	$\begin{gathered} (5,2) \\ 1386 \end{gathered}$	$(5,3)$	$\begin{gathered} (5,4) \\ 1 / 36 \end{gathered}$	$\begin{gathered} (5,5) \\ 1 / 36 \end{gathered}$	$\begin{aligned} & (5,6) \\ & 1 / 36 \end{aligned}$
$(6,1)$ $1 / 36$	$\begin{gathered} (6,2) \\ 1366 \end{gathered}$	$\begin{gathered} (6,3) \\ 1 / 36 \end{gathered}$	$\begin{gathered} (6,4) \\ 1 / 36 \end{gathered}$	$\begin{gathered} (6,5) \\ 1 / 36 \end{gathered}$	$\begin{aligned} & (6,6) \\ & 1 / 36 \end{aligned}$

