PROBABILITY, SIGNALS \& SVSTEMS

bY: RUAA Shallal anooz

RANDOM VARIABIES

- In an experiment, a measurement is usually denoted by a variable such as X.
- In a random experiment, a variable whose measured value can change (from one replicate of the experiment to another) is referred to as a random variable.

RANDOM VARIABIES

- Random variable \equiv a numerical quantity that takes on different values depending on chance
- Two types of random variables
\square Discrete random variables (countable set of possible outcomes)
\square Continuous random variable (unbroken chain of possible outcomes)

TWO TYPES OF RANDOM VARIABLES

- Discrete random variables
- Number of sales
- Number of calls
- Shares of stock
- People in line
- Mistakes per page
- Number of scratches on a surface
- Continuous random variables
- Length
- Depth
- Volume
- Time
- Weight
- Pressure
- Temperature
- Voltage
- Electrical current

DISCRETE RANDOM VARIABLES

PROBABILITY MASS FUNCTION

- Probability Mass Function (pmf)

- A set of probability value p_{i} assigned to each of the values taken by the discrete random variable x_{i}
$-0 \leq p_{i} \leq 1$ and $\sum_{i} p_{i}=1$
- Probability : $P\left(X=x_{i}\right)=p_{i} \quad$ for $\mathrm{i}=1,2,3, \cdots$

For a discrete random variable X with possible values $x_{1}, x_{2}, \ldots, x_{n}$, the probability mass function (or pmf) is

$$
\begin{equation*}
f\left(x_{i}\right)=P\left(X=x_{i}\right) \tag{3-13}
\end{equation*}
$$

EXAMPLE

- Machine Breakdowns
- Sample space : $S=\{$ electrical, mechanical,misuse $\}$
- Each of these failures may be associated with a repair cost
- State space: \{50,200,350\}
- Cost is a random variable : 50, 200, and 350

EXAMPLE

- Machine Breakdowns
- $P(\operatorname{cost}=50)=0.3, P(\operatorname{cost}=200)=0.2$,

x_{i}	50	200	350
p_{i}	0.3	0.2	0.5

EXAMPLE

Example 1. Toss a fair coin twice, \# of heads. Find the probability mass function

Solution:

$\mathrm{S}=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$
$\mathrm{P}\{\mathrm{HH}\}=\mathrm{P}\{\mathrm{HT}\}=\mathrm{P}\{\mathrm{TH}\}=\mathrm{P}\{\mathrm{TT}\}=1 / 4$
$P_{x}(x)= \begin{cases}\frac{1}{4} & \text { for } x=0 \\ \frac{2}{4} & \text { for } x=1 \\ \frac{1}{4} & \text { for } x=2\end{cases}$

CUMULATIVE DISTRIBUTION FUNGTION

The cumulative distribution function of a discrete random variable X is

$$
F(x)=P(X \leq x)=\sum_{x_{i} \leq x} f\left(x_{i}\right)
$$

CUMULATIUE DISTRIBUTION FUNCTION

- Cumulative Distribution Function
- Function : $F(x)=P(X \leq x) \quad F(x)=\sum_{y: y \leq x} P(X=y)$
- Abbreviation: c. d. f

CUMULATIVE DISTRIBUTION FUNCTION

- Machine Breakdowns

$$
\begin{aligned}
& -\infty<x<50 \Rightarrow F(x)=P(\operatorname{cost} \leq x)=0 \\
& 50 \leq x<200 \Rightarrow F(x)=P(\operatorname{cost} \leq x)=0.3 \\
& 200 \leq x<350 \Rightarrow F(x)=P(\operatorname{cost} \leq x)=0.3+0.2=0.5 \\
& 350 \leq x<\infty \Rightarrow F(x)=P(\operatorname{cost} \leq x)=0.3+0.2+0.5=1.0
\end{aligned}
$$

EXAMPLE

- Roll a coin 3 times, if $x=$ the number of heads and $y=$ the number of tails. Are the x and y independent or not and why? (explain your answer mathematically)

Solution:

S $=\{$ HHH, HHT, HTH, HTT, THH, THT, TTH,TTT $\}$

$R_{x}=\{0,1,2,3\} \quad$ range of x
$R_{y}=\{0,1,2,3\} \quad$ range of y
$P(X=x, Y=y)=P(X=x) P(Y=y)$
$\mathrm{P}(\mathrm{X}=0, \mathrm{Y}=0) \neq \mathrm{P}(\mathrm{X}=0) \mathrm{P}(\mathrm{Y}=0)$
$0 / 8 \neq 1 / 8.1 / 8$
x and y are dependent

CONTINUOUS RANDOM VARIABLES

Continuous random variables have an infinite continuum of possible values.
Examples: blood pressure, weight, the speed of a car, the real numbers from 1 to 6 .

- Example of Continuous Random Variables
- Metal Cylinder Production
- Suppose that the random variable \boldsymbol{X} is the diameter of a randomly chosen cylinder manufactured by the company.
- Since this random variable can take any value between b and a, it is a continuous random variable.

PROBABILITY DENSITY FUNCTION

The probability density function (or pdf) $f(x)$ of a continuous random variable is used to determine probabilities from areas as follows:

$$
\begin{equation*}
P(a<X<b)=\int_{a}^{b} f(x) d x \tag{3-2}
\end{equation*}
$$

The properties of the pdf are
(1) $f(x) \geq 0$
(2) $\int_{-\infty}^{\infty} f(x)=1$

PROBABIIITY DENSITY FUNCTION

If X is a continuous random variable, for any x_{1} and x_{2},

$$
P\left(x_{1} \leq X \leq x_{2}\right)=P\left(x_{1}<X \leq x_{2}\right)=P\left(x_{1} \leq X<x_{2}\right)=P\left(x_{1}<X<x_{2}\right)
$$

CUMULATIUE DISTRIBUTION FUNCTION

- Cumulative Distribution Function

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(y) d y
$$

$$
P(a<X \leq b)=P(X \leq b)-P(X \leq a)
$$

$$
=F(b)-F(a)
$$

- $P(a \leq X \leq b)=P(a<X \leq b)$

PROBABILITY DENSITY FUNCTION

Example

Let X be a continuous random variable with the following PDF

$$
f_{X}(x)= \begin{cases}c e^{-x} & x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

where c is a positive constant.
a. Find c.
b. Find the CDF of $\mathrm{X}, F_{X}(x)$.
c. Find $P(1<X<3)$.

PROBABILITY DENSITY FUNCTION

Solution:-
a. To find c, we can use Property 2 above, in particular

$$
\begin{aligned}
1 & =\int_{-\infty}^{\infty} f_{X}(u) d u \\
& =\int_{0}^{\infty} c e^{-u} d u \\
& =c\left[-e^{-x}\right]_{0}^{\infty} \\
& =c
\end{aligned}
$$

Thus, we must have $c=1$.
b. To find the CDF of X , we use $F_{X}(x)=\int_{-\infty}^{x} f_{X}(u) d u$, so for $x<0$, we obtain $F_{X}(x)=0$.

For $x \geq 0$, we have

$$
F_{X}(x)=\int_{0}^{x} e^{-u} d u=1-e^{-x}
$$

Thus,

$$
F_{X}(x)= \begin{cases}1-e^{-x} & x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

PROBABILITY DENSITY FUNCTION

c. We can find $P(1<X<3)$ using either the CDF or the PDF. If we use the CDF, we have

$$
P(1<X<3)=F_{X}(3)-F_{X}(1)=\left[1-e^{-3}\right]-\left[1-e^{-1}\right]=e^{-1}-e^{-3}
$$

Equivalently, we can use the PDF. We have

$$
\begin{aligned}
P(1<X<3) & =\int_{1}^{3} f_{X}(t) d t \\
& =\int_{1}^{3} e^{-t} d t \\
& =e^{-1}-e^{-3}
\end{aligned}
$$

