PROBABILITY, SIGNALS & SYSTEMS

BY: RUAA SHALLAL ANOOZ

MEAN, VARIANCE, AND STANDARD DEVIATION

Mean:

 $\mu = \Sigma \mathbf{X} \cdot \mathbf{P}(\mathbf{X})$

Variance:

 $\sigma^2 = \Sigma [X^2 \cdot P(X)] - \mu^2$

Standard Deviation:

$$\sigma = \sqrt{\Sigma [X^2 \cdot P(X)] - \mu^2}$$

Ruaa Shallal Abbas

EXPECTATION OF FUNCTIONS OF RANDOM VARIABLES

- □ The expected value, or expectation, of a discrete random variable of a probability distribution is the theoretical average of the variable.
- **The expected is by definition, the mean of the probability distribution.**

 $\mathbf{E}(\mathbf{X}) = \boldsymbol{\mu} = \boldsymbol{\Sigma} \mathbf{X} \cdot \mathbf{P}(\mathbf{X})$

EXPECTATION OF FUNCTIONS OF RANDOM VARIABLES

X is discrete

$$E\left[g\left(X\right)\right] = \sum_{x} g\left(x\right) p\left(x\right) = \sum_{i} g\left(x_{i}\right) p\left(x_{i}\right)$$

X is **continuous**

E. F.

$$E\left[g\left(X\right)\right] = \int_{-\infty}^{\infty} g\left(x\right) f\left(x\right) dx$$

at at

Ruaa Shallal Abbas

and the second

Find the mean of the number of spots that appear when a die is tossed.

x	1	2	3	4	5	6
<i>P(x)</i>	1/6	1/6	1/6	1/6	1/6	1/6

Solution:

 $\mu = \Sigma X \cdot P(X)$ = 1 \cdot 1/6 + 2 \cdot 1/6 + 3 \cdot 1/6 + 4 \cdot 1/6 + 5 \cdot 1/6 + 6 \cdot 1/6 = 21/6 = 3.5

Ruaa Shallal Abbas

Compute the Variance and standard deviation for the probability distribution.

x	1	2	3	4	5	6
<i>P(x)</i>	1/6	1/6	1/6	1/6	1/6	1/6

Solution:

$$\begin{aligned} \sigma^2 &= \Sigma \left[X^2 \cdot P(X) \right] \cdot \mu^2 \\ &= 1^2 \cdot 1/6 + 2^2 \cdot 1/6 + 3^2 \cdot 1/6 + 4^2 \cdot 1/6 + 5^2 \cdot 1/6 + 6^2 \cdot 1/6 - (3.5)^2 \\ \sigma^2 &= 2.9, \qquad \sigma = 1.7 \end{aligned}$$

at at

VARIANCE

- The average of the squared deviations about the mean is called the <u>variance</u>.
- a variance can of two types which are:
- 1- Variance of a population

 $s^2 = \frac{\sum (x - \bar{X})^2}{n - 1}$

2- Variance of a sample

 $\sigma^2 = \frac{\sum (x - \mu)^2}{N}$ For population variance the mean square deviation (POPULATION VARIANCE)

For sample variance

The variance of a population is denoted by σ^2 and the variance of a sample by S^2 .

POPULATION VARIANCE

The population variance is the mean squared deviation from the population mean:

$$\sigma^2 = \frac{\sum_{i=1}^N (x-\mu)^2}{N}$$

- Where σ^2 stands for the population variance
- μ is the population mean
- *N* is the total number of values in the population
- x is the value of the *i*-th observation.
- Σ represents a summation

SAMPLE VARIANCE

Ruaa Shallal Abbas

• The sample variance is defined as follows:

$$s^{2} = \frac{\sum_{i=1}^{N} (x - \bar{X})^{2}}{n - 1}$$

- Where *s*² stands for the sample variance
- x is the sample mean
- *n* is the total number of values in the sample
- x_i is the value of the *i*-th observation.
- $\boldsymbol{\Sigma}$ represents a summation

STANDARD DEVIATION

standard deviation - is the positive square root of the variance

• population standard deviation:

$$\sigma = \sqrt{\sigma^2}$$
 $\sigma = \sqrt{\frac{\Sigma(x-\mu)^2}{N}}$

the root mean square deviation (POPULATION STANDARD DEVIATION)

• sample standard deviation: $s = \sqrt{s^2}$ $s = \sqrt{\frac{\Sigma(x - \overline{X})^2}{n-1}}$

EXAMPLE

e.g. Find the msd of the following data:

and the second

1

A. A.

Ruaa Shallal Abbas

-

ALC: NO

e.g. Find the sample mean and sample Variance of the following data:

Mean,
$$\overline{x} = \frac{\sum x}{n} \implies \overline{x} = \frac{30}{3} = 10$$

$$s^{2} = \frac{\sum (x - \bar{x})^{2}}{n - 1} = \frac{(7 - 10)^{2} + (9 - 10)^{2} + (14 - 10)^{2}}{2}$$

and an

6.2

$$=\frac{9+1+16}{2}=13.0$$

Ruaa Shallal Abbas

SUMMARY

- > The *msd* or variance, measure the spread or variability in the data.
- > The sample standard deviation is the larger than the rmsd because we divide by (n-1)

To find the *msd* or sample variance, we square the relevant quantity given by the calculator:

 $msd = (rmsd)^2$ sample variance = s^2

Then, we divide by *n* for the *msd* or (n - 1) for s^2 .

SAMPLE MEAN FOR FREQUENCY DATA

$$mean \,\overline{x} = \frac{\sum x \, f}{\sum f} = \frac{\sum x \, f}{n}$$

Designation of the second second

Where, f is the frequency x is the data n is the summation of the frequency

SAMPLE VARIANCE FOR FREQUENCY DATA

Sample variance
$$S^2 = \frac{\sum f \cdot x^2 - \frac{(\sum x f)^2}{n}}{n-1}$$

a star

STATISTICS IN THE

E. F.

1

SAMPLE STANDARD DEVIATION FOR FREQUENCY DATA

Sample Standard deviation
$$S = \sqrt{\frac{\sum f \cdot x^2 - \frac{1}{2}}{n-1}}$$

A second second and second second

 $f \cdot x$)

6.5

15

Ruaa Shallal Abbas

inger :

EXAMPLE

Ruaa Shallal Abbas

Find the mean and sample standard deviation of the following data:

x	1	2	5	10
Frequency, f	3	5	8	4

Solution:

Find the sample standard deviation of the following lengths: Solution: We need the class mid-values

20

Length (cm)	1-9	10-14	15-19	20-29	
x	5	12	17	24.5	$n = \sum f = 30$
Frequency, f	2	7	12	9	$\overline{x} = \frac{\sum xf}{\sum f} = 17.283$
xf	10	84	204	220.5	
x^2	25	144	289	600.25	
$x^2 f$	50	1008		5402.25	
$S^{2} = \frac{\sum f \cdot x^{2} - \frac{(\sum x f)^{2}}{n}}{n-1}$			= <u>9928</u> Stan	.25 – 8.96 29 dard de	$\frac{51}{2} = 33.351$ viation, $s = 5.77$

Ruaa Shallal Abbas

Find the mean and sample variance of 20 values of x given the following:

$$\sum x = 82 \quad \text{and} \quad \sum x^2 = 370$$

Solution:

Since we only have summary data, we must use the formulae

sample mean, $\left| \overline{x} = \frac{\sum x}{n} \right| \implies \overline{x} = \frac{82}{20} = 4 \cdot 1$

sample variance, S²

$$x^2 = \frac{\sum x^2 - \overline{x}^2}{n - 1} = \frac{370 - 16.81}{19} = \mathbf{1} \cdot \mathbf{78}$$