PROBABILITY, SIGNALS \& SVSTEMS

bY: RUAA Shallal anooz

MEAN, VARIANCE, AND STANDARD DEVIITION

Mean:

$$
\mu=\Sigma \mathbf{X} . \mathbf{P}(\mathbf{X})
$$

Variance:

$$
\sigma^{2}=\Sigma\left[\mathbf{X}^{2} \cdot \mathbf{P}(\mathbf{X})\right]-\mu^{2}
$$

Standard Deviation:

$$
\sigma=\sqrt{\Sigma\left[\mathrm{X}^{2} \cdot \mathrm{P}(\mathbf{X})\right]-\mu^{2}}
$$

EXPECTATION OF FUNGTIONS OF RANDOM VARIIABLES

- The expected value, or expectation, of a discrete random variable of a probability distribution is the theoretical average of the variable.
- The expected is by definition, the mean of the probability distribution.

$$
\mathbf{E}(\mathbf{X})=\mu=\boldsymbol{\Sigma} \mathbf{X} . \mathbf{P}(\mathbf{X})
$$

EXPECTATION OF FUNCTIONS OF RANDOM VARIABILS

X is discrete

$$
E[g(X)]=\sum_{x} g(x) p(x)=\sum_{i} g\left(x_{i}\right) p\left(x_{i}\right)
$$

X is continuous

$$
E[g(X)]=\int_{-\infty}^{\infty} g(x) f(x) d x
$$

EXAMPLE

Find the mean of the number of spots that appear when a die is tossed.

\mathbf{x}	1	2	3	4	5	6
$\boldsymbol{P}(\mathbf{x})$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$

Solution:

$$
\begin{aligned}
\mu & =\Sigma \mathrm{X} \cdot \mathrm{P}(\mathrm{X}) \\
& =1 \cdot 1 / 6+2 \cdot 1 / 6+3 \cdot 1 / 6+4 \cdot 1 / 6+5 \cdot 1 / 6+6 \cdot 1 / 6 \\
& =21 / 6=3 \cdot 5
\end{aligned}
$$

EXAMPLE

Compute the Variance and standard deviation for the probability distribution.

\mathbf{x}	1	2	3	4	5	6
$\boldsymbol{P}(\mathbf{x})$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$

Solution:

$$
\begin{aligned}
\sigma^{2} & =\Sigma\left[\mathrm{X}^{2} \cdot \mathrm{P}(\mathrm{X})\right]-\mu^{2} \\
& =1^{2} \cdot 1 / 6+2^{2} \cdot 1 / 6+3^{2} \cdot 1 / 6+4^{2} \cdot 1 / 6+5^{2} \cdot 1 / 6+6^{2} \cdot 1 / 6-(3.5)^{2} \\
\sigma^{2} & =2.9, \quad \sigma=1.7
\end{aligned}
$$

- The average of the squared deviations about the mean is called the variance.
- a variance can of two types which are:

1- Variance of a population
2- Variance of a sample

$$
\sigma^{2}=\frac{\sum(x-\mu)^{2}}{N} \quad \text { For nopulation variance }
$$

the mean square deviation (POPULATION VARIANCE)

$$
s^{2}=\frac{\sum(x-\bar{X})^{2}}{n-1}
$$

For sample variance

The variance of a population is denoted by σ^{2} and the variance of a sample by S^{2}.

POPULATION VARIANCE

- The population variance is the mean squared deviation from the population mean:

$$
\sigma^{2}=\frac{\sum_{i=1}^{N}(x-\mu)^{2}}{N}
$$

- Where σ^{2} stands for the population variance
- μ is the population mean
- N is the total number of values in the population
- x is the value of the i-th observation.
- \sum represents a summation

SAMPLE VARIANCE

- The sample variance is defined as follows:

$$
s^{2}=\frac{\sum_{i=1}^{N}(x-\bar{X})^{2}}{n-1}
$$

- Where s^{2} stands for the sample variance
- x is the sample mean
- n is the total number of values in the sample
- x_{i} is the value of the i-th observation.
- \sum represents a summation

STANDARD DEVIATION

standard deviation - is the positive square root of the variance

- population standard deviation: $\quad \sigma=\sqrt{\sigma^{2}} \quad \sigma=\sqrt{\frac{\sum(x-\mu)^{2}}{N}}$
the root mean square deviation (POPULATION STANDARD DEVIATION)
- sample standard deviation: $\quad s=\sqrt{s^{2}} \quad s=\sqrt{\frac{\Sigma(x-\bar{X})^{2}}{n-1}}$

EXAMPLE

e.g. Find the msd of the following data:

$$
\begin{aligned}
\begin{array}{|c|c|c|c|}
\hline x & 7 & 9 & 14 \\
\text { Mean, } \bar{x}= & \frac{\sum x}{n} \Rightarrow \quad \bar{x}=\frac{30}{3}=10 \\
\text { (i) } \sigma^{2}=\frac{\sum(x-\bar{x})^{2}}{n} & =\frac{(7-10)^{2}+(9-10)^{2}+(14-10)^{2}}{3} \\
& =\frac{9+1+16}{3}=8 \cdot 67 \\
\text { (ii) } \sigma^{2}=\frac{\sum x^{2}}{n}-\bar{x}^{2} & =\frac{49+81+196}{3}-10^{2}=\frac{326}{3}-100=8 \cdot 67
\end{array} \\
\end{aligned}
$$

EXAMPLE

e.g. Find the sample mean and sample Variance of the following data:

$$
\begin{aligned}
& \text { Mean, } \bar{x}=\frac{\sum x}{n} \Rightarrow \bar{x}=\frac{30}{3}=10 \\
& s^{2}=\frac{\sum(x-\bar{x})^{2}}{n-1}=\frac{(7-10)^{2}+(9-10)^{2}+(14-10)^{2}}{2} \\
& =\frac{9+1+16}{2}=13.0
\end{aligned}
$$

SUMMARY

$>$ The $m s d$ or variance, measure the spread or variability in the data.
$>$ The sample standard deviation is the larger than the rmsd because we divide by (n-1)
$>$ To find the $m s d$ or sample variance, we square the relevant quantity given by the calculator:

$$
m s d=(r m s d)^{2} \quad \text { sample variance }=s^{2}
$$

Then, we divide by n for the $m s d$ or $(n-1)$ for s^{2}.

SAMPLE MEAN FOR FREQUENCY DATA

$$
\operatorname{mean} \bar{x}=\frac{\sum x f}{\sum f}=\frac{\sum x f}{n}
$$

Where,
f is the frequency
x is the data
n is the summation of the frequency

SAMPLE VARIIANCE FOR FREQUENCY DATA

$$
\text { Sample variance } S^{2}=\frac{\sum f \cdot x^{2}-\frac{\left(\sum x f\right)^{2}}{n}}{n-1}
$$

Where,
f is the frequency
x is the data
n is the summation of the frequency

SAMPLE STANDARD DEVIATION FOR FREQUENCY DATA

Where,
f is the frequency
x is the data
n is the summation of the frequency

EXAMPLE

Find the mean and sample standard deviation of the following data:

x	1	2	5	10
Frequency, f	3	5	8	4

Solution:

$$
\begin{gathered}
\bar{x}=\frac{\sum x f}{n}=\frac{1 * 3+2 * 5+5 * 8+10 * 4}{3+5+8+4}=\frac{93}{20}=4 \cdot 65 \\
S^{2}=\frac{\sum f \cdot x^{2}-\frac{\left(\sum x f\right)^{2}}{n}}{n-1}=\frac{1^{2} \times 3+\ldots+10^{2} \times 4-\frac{(1 \times 3+\ldots+10 \times 4)^{2}}{20}}{19}=\mathbf{1 0 . 0 2 9} \\
S=\sqrt{S^{2}}=\sqrt{10.029}=3.17
\end{gathered}
$$

EXAMPLE

Find the sample standard deviation of the following lengths:
Solution: We need the class mid-values

Length (cm)	1-9	10-14	15-19	20-29	$\begin{aligned} & n=\sum f=30 \\ & \bar{x}=\frac{\sum x f}{\sum f}=17.283 \end{aligned}$
x	5	12	17	24.5	
Frequency, f	2	7	12	9	
$x f$	10	84	204	220.5	
x^{2}	25	144	289	600.25	
$x^{2} f$	50	1008	3468	5402.25	
	$\sum f \cdot x^{2}$	$-\frac{\left(\sum x f\right)^{2}}{n}$	$=\underline{9928 .}$	$\frac{25-8.961}{29}$	$=33.351$

Standard deviation, $s=5 \cdot 77$

EXAMPLE

Find the mean and sample variance of 20 values of x given the following:

$$
\sum x=82 \text { and } \sum x^{2}=370
$$

Solution:
Since we only have summary data, we must use the formulae sample mean, $\bar{x}=\frac{\sum x}{n} \Rightarrow \bar{x}=\frac{82}{20}=4 \cdot 1$
sample variance, $S^{2}=\frac{\sum x^{2}-\bar{x}^{2}}{n-1}=\frac{370-16.81}{19}=\mathbf{1} \cdot \mathbf{7 8}$

