
C++ Programming Language Lecture 3

1

Operators

Operators in C++ are classified into: arithmetic, logical, relational, and

bitwise operators.

Arithmetic operators

Examples:

z = x + y;

area_square = side * side;

area_triangle = (base*height)/2;

z = x % y;

Notes:

 The result of a binary operation with values of the same type is

another value of the same type.

 If a binary operation is performed between values with different

types, then the value with the lower type is converted to the higher

type, and thus the operation is performed with values of the same

type.

 When you apply / to an integer, any remainder will be truncated.

 The modulus operator % produces the remainder of an integer

division. It cannot be used with floating-point types.

Operator
-

+

*

/

%

--
++

Action
Subtraction, also unary minus

Addition

Multiplication

Division

Modulus

Decrement

Increment

C++ Programming Language Lecture 3

2

Cast operator

Example

Write a C++ program that reads two marks and prints the average.

#include <iostream>

using namespace std;

int main()

{

int mark1, mark2, sum, count = 2;

float average;

cout << “Enter first mark: ” << endl;

cin >> mark1;

cout << “Enter second mark: ” << endl;

cin >> mark2;

sum = mark1 + mark2;

average = sum/count;

cout << “The average is: ” << average << endl;

 return 0;

}

if mark1 is 90 and mark2 is 91 then average is 90.0 not 90.5.

To compute the average correctly, we use cast operator as follows:

average = (float)sum/(float)count;

Note that that cast operator affects only the value used in the

computation, it does not change the type of the variables sum and count.

Priority of arithmetic operations

Precedence
1

Operator
()

Associativity
innermost first

2 Unary
+ - cast

right to left

3 Binary left to right

* / %

4 Binary left to right

+ -

C++ Programming Language Lecture 3

3

Example:

Let us solve the following equation according to the priority of

operations:

12*m + (m*n % 13 + m/n) * k/10

Assume m = 12 , n = 5 and k = 20

Sub expression Result Expression after each step

m * n 60 12*m+(60%13+m/n)*k/10

60 % 13 8 12*m+(8+m/n)*k/10

m / n 2 12*m +(8+2)*k/10

8 + 2 10 12*m+10*k/10

12 * m 144 144+10*k/10

10 * k 200 144+200/10

200 /10 20 144+20

144 + 20 164 164

Example:

Write a C++ program to compute the volume of a sphere.

#include <iostream>

using namespace std;

int main()

{

const float PI = 3.141593;

float radius , volume;

cout << “Enter the radius: ” << endl;

cin >> radius;

volume = (4.0 * PI * radius * radius * radius)/3.0;

cout << “The volume of sphere: ” << volume << endl;

return 0;

}

Example

Write a C++ program to compute the following equation:

C++ Programming Language Lecture 3

4

#include <iostream>

using namespace std;

int main()

{

float x, f;

cout << “Enter a value of x: ” << endl;

cin >> x;

f = (x*x*x – 2*x*x + x – 6.3)/(x*x + 0.505*x – 3.14);

cout << “f = ” << f << endl;

return 0;

}

The statement

f = (x*x*x – 2*x*x + x – 6.3)/(x*x + 0.505*x – 3.14);

can also be written as

f = (x*x*x – 2*x*x + x – 6.3)/

(x*x + 0.505*x – 3.14);

Or
float numerator, denominator;

numerator = x*x*x – 2*x*x + x – 6.3;

denominator = x*x + 0.505*x – 3.14;

f = numerator / denominator;

Overflow and Underflow

When the result of an arithmetic operation exceeds the range of the

variable’s data type, an error called overflow occurs.

Example

float x = 2.5e30; // x = 2.5 × 10
30

 10
30

Here, the value of z will be 2.5e60, i.e. overflow. C++ generates an error

message “Floating-point error: Overflow”.

Similarly, when the result of an operation is too small to store in the

memory allocated for the variable, an error called underflow occurs.

float y = 1.0e30; // y = 1.0 ×

float

z = x

z;

* y;

C++ Programming Language Lecture 3

5

Example

float x = 2.5e-30; // x = 2.5 × 10
-30

10

-30

Here, the value of z will be 2.5e-60, i.e. underflow. C++ replaces this

value by zero.

Increment / Decrement operators

are applied either in a prefix position (before the identifier) as in

++count, or in a postfix position (after the identifier) as in count++.

The statement

x++;

is equal to the statement

x = x + 1;

and

--y;

is equal to the statement

y = y - 1;

However, there is a difference between the prefix and postfix forms when

you use these operators in an expression.

The statement

w = ++x – y;

is equivalent to the statements

x = x + 1;

w = x – y;

while the statement

w = x++ - y;

float y = 1.0e-30; // y = 1.0 ×

float

z = x

z;

* y;

C++ Programming Language Lecture 3

6

is equivalent to the statements

w = x – y;

x = x + 1;

Example

#include <iostream>

using namespace std;

int main()

{

int x , y , z;

x = 2;

y = 5;

z = x++ + y;

cout<<“x=“<< x <<“ y=”<< y <<“ z=”<< z << endl;

z = ++x + y--;

cout<<“x=“<< x <<“ y=”<< y <<“ z=”<< z << endl;

return 0;

}

Logical operators

Example:

(a || b) && !(a && b)

Relational operators

Operator Action

> Greater than

>= Greater than or equal

< Less than

<= Less than or equal

== Is equal

!= Not equal

Result: 1 True

0 False

Operator
&&

| |
!

Action
AND

OR

NOT

C++ Programming Language Lecture 3

7

Example:

10>5 && !(10<9) || 3<=4

In this case the result is true.

Bitwise operators

Example:

int x=10, y=2, r;

r = x & y;

r= x | y;

r = x ^ y;

r = x >> 1;

Assignment Operators

=

+=

-=

*=

/=

%=

Example:

x = x + 3; sum = sum + x; d = d / 4.5;

x += 3; sum += x; d /= 4.5;

r

r

= r %

%= 2;

2;

Operator
&

|

^

~

>>
<<

Action
AND

OR

Exclusive OR (XOR)

One's complement (NOT)

Shift right
Shift left

C++ Programming Language Lecture 3

8

Exercises

1. Write a C++ program to perform the following equations:

2. Consider the arithmetic expressions

1. a * b / (-c * 31 % 13) * d

2. a * (b * b) – (c * b) + d

Write the order in which the operations will be executed?

3. What is the computation sequence of the following expression

(a + b / (c - 5)) / ((d + 7) / (e - 37) / 3)

if a=10 , b=20 , c=14 , d=8, and e=40.

4. For each the following algebraic expressions write an equivalent

C++ arithmetic expression.

c)

C++ Programming Language Lecture 3

9

5. Determine the values of the variables for each of the following C++

statements:

a) z = x++*y;

b) z = 2*++x*y;

c) x += 4+--y/x---3;

d) y %= x;

Assume that x=4 , y=6. Assume that all variables are integers.

6. What does this statement mean?

total += --n;

