NAJAF COLLEGE OF TECHNOLOGY DEPARTMENT OF AVIONICS ENGINEERING

DIGITAL SIGNAL PROCESSING $3^{\text {rd }}$ YEAR

BY
RUAA SHALLAL ANOOZ

Fourier series

1. Even Functions

The value of the function would be the same when we walk equal distances along the X -axis in opposite directions.

Mathematically speaking :
$f(-\theta)=f(\theta)$

Fourier series

2. Odd Functions

The value of the function would change its sign but with the same magnitude when we walk equal distances along the X -axis in opposite directions.

Mathematically speaking :
$f(-\theta)=-f(\theta)$

Ruaa Shallal Ahbas

Fourier series

Even functions can solely be represented by cosine waves because, cosine waves are even functions. A sum of even functions is another even function.

Fourier series

Odd functions can solely be represented by sine waves because, sine waves are odd functions. A sum of odd functions is another odd function.

Fourier series

The Fourier series of an even function $f(\boldsymbol{\theta})$ is expressed in terms of a cosine series.

$$
f(\theta)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n \theta
$$

The Fourier series of an odd function $f(\theta)$ is expressed in terms of a sine series.

$$
f(\theta)=\sum_{n=1}^{\infty} b_{n} \sin n \theta
$$

Example

Find the Fourier series of the following periodic function.

$$
\begin{aligned}
& f(x)=x^{2} \text { when }-\pi \leq x \leq \pi \\
& f(\theta+2 \pi)=f(\theta)
\end{aligned}
$$

Example

Sol:

$$
\begin{aligned}
a_{0} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x^{2} d x \\
& =\frac{1}{2 \pi}\left[\frac{x^{3}}{3}\right]_{x=-\pi}^{x=\pi}=\frac{\pi^{2}}{3} \\
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x \\
& =\frac{1}{\pi}\left[\int_{-\pi}^{\pi} x^{2} \cos n x d x\right]
\end{aligned}
$$

Use integration by parts.

Example

$$
\begin{aligned}
& a_{n}=\frac{4}{n^{2}} \cos n \pi \\
& a_{n}=-\frac{4}{n^{2}} \quad \text { when } n \text { is odd } \\
& a_{n}=\frac{4}{n^{2}} \quad \text { when } n \text { is even }
\end{aligned}
$$

This is an even function.
Therefore, $b_{n}=0$
The corresponding Fourier series is
$\frac{\pi^{2}}{3}-4\left(\cos x-\frac{\cos 2 x}{2^{2}}+\frac{\cos 3 x}{3^{2}}-\frac{\cos 4 x}{4^{2}}+\cdots\right)$

Functions Having Arbitrary Period

Assume that a function has period T. We can relate angle (θ) with time (t) in the following manner:

$$
\boldsymbol{\theta}=\boldsymbol{\omega} \mathbf{t}
$$

$\boldsymbol{\omega}$ is the angular velocity in radians per second.

$$
\omega=2 \pi f
$$

f is the frequency of the periodic function, $f(t)$

Functions Having Arbitrary Period

$$
\begin{array}{r}
\theta=2 \pi f t \quad \text { Where } \quad f=\frac{1}{T} \\
\theta=\frac{2 \pi}{T} t
\end{array}
$$

Therefore,

$$
\theta=\frac{2 \pi}{T} t \quad d \theta=\frac{2 \pi}{T} d t
$$

Now change the limits of integration.
$\boldsymbol{\theta}=-\boldsymbol{\pi}$
$-\pi=\frac{2 \pi}{T} t$
$t=-\frac{T}{2}$
$\boldsymbol{\theta}=\boldsymbol{\pi}$
$\pi=\frac{2 \pi}{T} t$
$t=\frac{T}{2}$

Functions Having Arbitrary Period

$$
\begin{array}{ll}
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta) d \theta & a_{0}=\frac{1}{T} \int_{-T / 2}^{T / 2} f(t) d t \\
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \cos n \theta d \theta \quad n=1,2, \cdots \longrightarrow a_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} f(t) \cos \left(\frac{2 \pi n}{T} t\right) d t \quad n=1,2, \cdots \\
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \sin n \theta d \theta \quad n=1,2, \cdots \quad \longrightarrow \quad b_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} f(t) \sin \left(\frac{2 \pi n}{T} t\right) d t \quad n=1,2, \cdots
\end{array}
$$

Example

Find the Fourier series of the following periodic function.

$$
f(t)=t \quad \text { when }-\frac{T}{4} \leq t \leq \frac{T}{4} \quad=-t+\frac{T}{2} \quad \text { when } \quad \frac{T}{4} \leq t \leq \frac{3 T}{4}
$$

$$
f(t+T)=f(t)
$$

Example

This is an odd function. Therefore, $\boldsymbol{a}_{\boldsymbol{n}}=\mathbf{0}$
$b_{n}=\frac{2}{T} \int_{0}^{T} f(t) \sin \left(\frac{2 \pi n}{T} t\right) d t$
$b_{n}=\frac{4}{T} \int_{0}^{T / 2} f(t) \sin \left(\frac{2 \pi n}{T} t\right) d t$
$b_{n}=\frac{4}{T} \int_{0}^{T / 4} t \sin \left(\frac{2 \pi n}{T} t\right) d t+\frac{4}{T} \int_{T / 4}^{T / 2}\left(-t+\frac{T}{2}\right) \sin \left(\frac{2 \pi n}{T} t\right) d t$
Use integration by parts.

Example

$$
b_{n}=\frac{4}{T}\left[2 \cdot\left(\frac{T}{2 \pi n}\right)^{2} \sin \left(\frac{n \pi}{2}\right)\right]=\frac{2 T}{n^{2} \pi^{2}} \sin \left(\frac{n \pi}{2}\right)
$$

$b_{n}=0$ when n is even.
Therefore, the Fourier series is

$$
\frac{2 T}{\pi^{2}}\left[\sin \left(\frac{2 \pi}{T} t\right)-\frac{1}{3^{2}} \sin \left(\frac{6 \pi}{T} t\right)+\frac{1}{5^{2}} \sin \left(\frac{10 \pi}{T} t\right)-\cdots\right]
$$

The Complex Form of Fourier Series

$$
f(\theta)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n \theta+\sum_{n=1}^{\infty} b_{n} \sin n \theta
$$

Let us utilize the Euler formulae.

$$
\cos \theta=\frac{e^{j \theta}+e^{-j \theta}}{2}
$$

$\sin \theta=\frac{e^{j \theta}-e^{-j \theta}}{2 i}$

The Complex Form of Fourier Series

The nth harmonic component of (1) can be expressed as:

$$
\begin{aligned}
& a_{n} \cos n \theta+b_{n} \sin n \theta \\
& =a_{n} \frac{e^{j n \theta}+e^{-j n \theta}}{2}+b_{n} \frac{e^{j n \theta}-e^{-j n \theta}}{2 i} \\
& =a_{n} \frac{e^{j n \theta}+e^{-j n \theta}}{2}-i b_{n} \frac{e^{j n \theta}-e^{-j n \theta}}{2} \\
& =\left(\frac{a_{n}-j b_{n}}{2}\right) e^{j n \theta}+\left(\frac{a_{n}+j b_{n}}{2}\right) e^{-j n \theta}
\end{aligned}
$$

The Complex Form of Fourier Series

Denoting
$c_{n}=\left(\frac{a_{n}-j b_{n}}{2}\right) \quad, \quad c_{-n}=\left(\frac{a_{n}+j b_{n}}{2}\right)$
and $\quad c_{0}=a_{0}$

$$
\begin{aligned}
& a_{n} \cos n \theta+b_{n} \sin n \theta \\
& =c_{n} e^{j n \theta}+c_{-n} e^{-j n \theta}
\end{aligned}
$$

The Complex Form of Fourier Series

The Fourier series for $f(\theta)$ can be expressed as:

$$
\begin{aligned}
& f(\theta)=c_{0}+\sum_{n=1}^{\infty}\left(c_{n} e^{j n \theta}+c_{-n} e^{-j n \theta}\right) \\
& =\sum_{n=-\infty}^{\infty} c_{n} e^{j n \theta}
\end{aligned}
$$

The coefficients can be evaluated in the following manner.

$$
\begin{aligned}
& c_{n}=\left(\frac{a_{n}-j b_{n}}{2}\right) \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta) \cos n \theta d \theta-\frac{j}{2 \pi} \int_{-\pi}^{\pi} f(\theta) \sin n \theta d \theta
\end{aligned}
$$

The Complex Form of Fourier Series

$$
\begin{aligned}
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta)(\cos n \theta-j \sin n \theta) d \theta \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta) e^{-j n \theta} d \theta \\
& c_{-n}=\left(\frac{a_{n}+j b_{n}}{2}\right) \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta) \cos n \theta d \theta+\frac{j}{2 \pi} \int_{-\pi}^{\pi} f(\theta) \sin n \theta d \theta \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta)(\cos n \theta+j \sin n \theta) d \theta \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta) e^{j n \theta} d \theta
\end{aligned}
$$

The Complex Form of Fourier Series

$$
c_{0}=\left(\frac{a_{0}}{2}\right)
$$

$$
c_{n}=\left(\frac{a_{n}-j b_{n}}{2}\right)
$$

$$
c_{-n}=\left(\frac{a_{n}+j b_{n}}{2}\right)
$$

Note that c_{-n} is the complex conjugate of ${ }_{c_{n}}$. Hence we may write that

$$
c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta) e^{-j n \theta} d \theta \quad n=0, \pm 1, \pm 2, \cdots \quad \text { or } \quad C_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) \cdot e^{-i n x} d x
$$

The complex form of the Fourier series of $f(\theta)$ with period 2π is:

$$
f(\theta)=\sum_{n=-\infty}^{\infty} c_{n} e^{j n \theta}
$$

Example

Using complex form, find the Fourier series of the function

$$
f(\theta)=\left\{\begin{array}{cc}
-1 & -\pi<\theta<0 \\
1 & 0<\theta<\pi
\end{array}\right.
$$

Sol:

$$
\begin{aligned}
& c_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{2 \pi}\left[\int_{-\pi}^{0}(-1) d x+\int_{0}^{\pi} d x\right]=\frac{1}{2 \pi}\left[\left.(-x)\right|_{-\pi} ^{0}+\left.x\right|_{0} ^{\pi}\right] \\
& =\frac{1}{2 \pi}\left(-\not \pi^{\prime}+\not \pi^{\prime}\right)=0, \\
& c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x=\frac{1}{2 \pi}\left[\int_{-\pi}^{0}(-1) e^{-i n x} d x+\int_{0}^{\pi} e^{-i n x} d x\right] \\
& =\frac{1}{2 \pi}\left[-\frac{\left.\left(e^{-i n x}\right)\right|_{-\pi} ^{0}}{-i n}+\frac{\left.\left(e^{-i n x}\right)\right|_{0} ^{\pi}}{-i n}\right]=\frac{i}{2 \pi n}\left[-\left(1-e^{i n \pi}\right)+e^{-i n \pi}-1\right] \\
& =\frac{i}{2 \pi n}\left[e^{i n \pi}+e^{-i n \pi}-2\right]=\frac{i}{\pi n}\left[\frac{e^{i n \pi}+e^{-i n \pi}}{2}-1\right]=\frac{i}{\pi n}[\cos n \pi-1] \\
& =\frac{i}{\pi n}\left[(-1)^{n}-1\right] .
\end{aligned}
$$

