AL FURAT AL AWSAT TECHNICAL UNIVERSITY NAJAF COLLEGE OF TECHNOLOGY DEPARTMENT OF AVIONICS ENGINEERING

DIGITAL SIGNAL PROCESSING 3rd YEAR

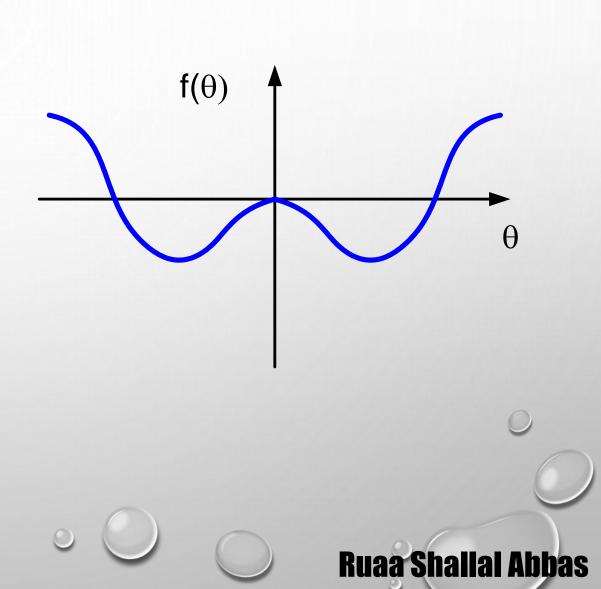
BY

RUAA SHALLAL ANOOZ

1. Even Functions

The value of the function would be the same when we walk equal distances along the X-axis in opposite directions.

Mathematically speaking : $f(-\theta) = f(\theta)$

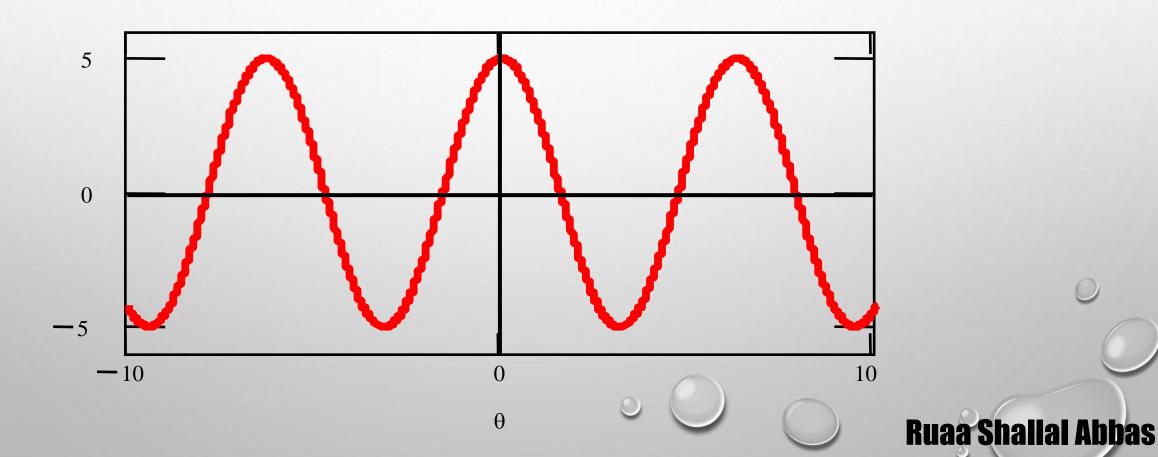


2. Odd Functions

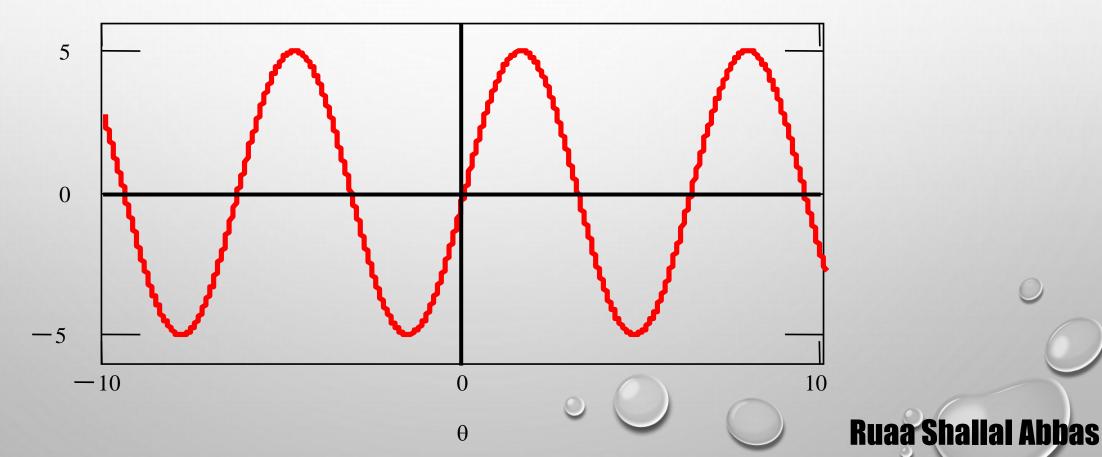
The value of the function would change its sign but with the same magnitude when we walk equal distances along the X-axis in opposite directions.

Mathematically speaking : $f(-\theta) = -f(\theta)$ **f(**θ) θ iaa Shallal Al

Even functions can solely be represented by cosine waves because, cosine waves are even functions. A sum of even functions is another even function.



Odd functions can solely be represented by sine waves because, sine waves are odd functions. A sum of odd functions is another odd function.



nallal

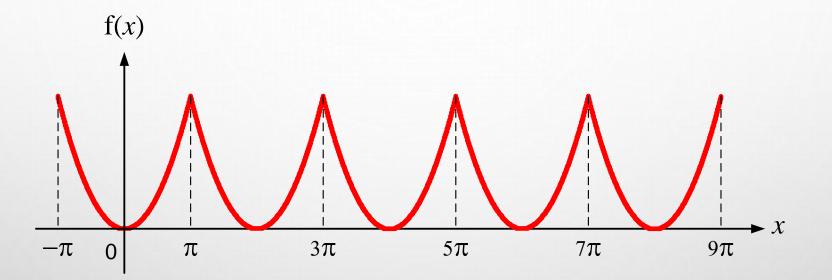
The Fourier series of an even function $f(\theta)$ is expressed in terms of a cosine series.

$$f(\theta) = a_0 + \sum_{n=1}^{\infty} a_n \cos n \, \theta$$

The Fourier series of an odd function $f(\theta)$ is expressed in terms of a sine series.

$$f(\theta) = \sum_{n=1}^{\infty} b_n \sin n \, \theta$$

Find the Fourier series of the following periodic function.



Ruaa Shallal Abbas

$$f(x) = x^2$$
 when $-\pi \le x \le \pi$

 $f(\theta + 2\pi) = f(\theta)$

0

Ruaa Shallal Abbas

Sol:

$$a_{0} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^{2} dx$$
$$= \frac{1}{2\pi} \left[\frac{x^{3}}{3} \right]_{x=-\pi}^{x=\pi} = \frac{\pi^{2}}{3}$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n \, x \, dx$$
$$= \frac{1}{\pi} \left[\int_{-\pi}^{\pi} x^2 \cos n \, x \, dx \right]$$

Use integration by parts.

Ruaa Shallal Abbas

$$a_n = \frac{4}{n^2} \cos n \pi$$

$$a_n = -\frac{4}{n^2} \quad \text{when n is odd}$$

$$a_n = \frac{4}{n^2} \quad \text{when n is even}$$

This is an even function.

Therefore, $b_n = 0$

The corresponding Fourier series is

$$\frac{\pi^2}{3} - 4\left(\cos x - \frac{\cos 2x}{2^2} + \frac{\cos 3x}{3^2} - \frac{\cos 4x}{4^2} + \cdots\right)$$

Functions Having Arbitrary Period

Assume that a function has period T. We can relate angle (θ) with time(t) in the following manner:

$\theta = \omega t$

 $\boldsymbol{\omega}$ is the angular velocity in radians per second.

$\omega=2\pi f$

f is the frequency of the periodic function, f(t)

Functions Having Arbitrary Period

$$\theta = 2\pi ft$$
 where $f = \frac{1}{T}$

$$\theta = \frac{2\pi}{T}t$$

Therefore,

$$\theta = \frac{2\pi}{T}t \qquad \qquad d\theta = \frac{2\pi}{T}dt$$

Now change the limits of integration.

$$heta = -\pi$$
 $-\pi = \frac{2\pi}{T}t$ $t = -\frac{T}{2}$

 $\overline{2}$

Ruaa Shallal Abbas

 $\pi = \frac{2\pi}{T}t$

 $\theta = \pi$

Functions Having Arbitrary Period

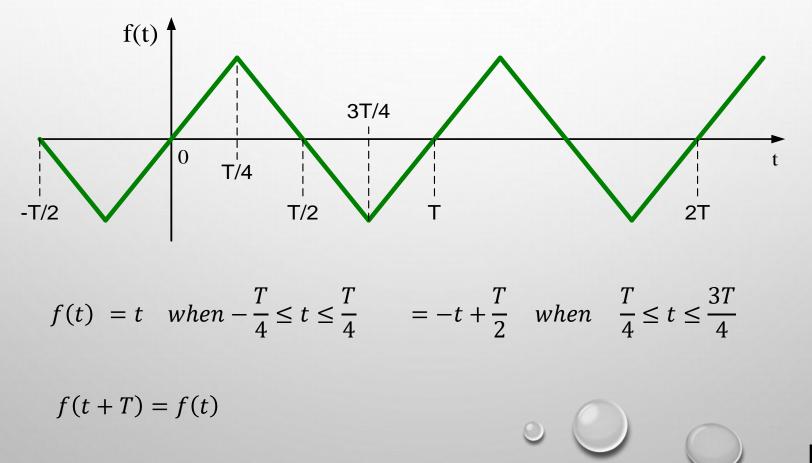
$$a_{0} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) \, d\theta \qquad \qquad \longrightarrow \qquad \qquad a_{0} = \frac{1}{T} \int_{-T/2}^{T/2} f(t) \, dt$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \cos n\,\theta d\theta \quad n = 1, 2, \cdots \longrightarrow \qquad a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(\frac{2\pi n}{T}t) dt \quad n = 1, 2, \cdots$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \sin n \,\theta \,d\theta \quad n = 1, 2, \cdots \qquad \longrightarrow \qquad b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(\frac{2\pi n}{T} t) \,dt \quad n = 1, 2, \cdots$$

Ruaa Shallal Abbas

Find the Fourier series of the following periodic function.



Ruaa Shallal Abbas

This is an odd function. Therefore, $a_n = 0$

$$b_n = \frac{2}{T} \int_0^T f(t) \sin(\frac{2\pi n}{T} t) dt$$

$$b_n = \frac{4}{T} \int_0^{T/2} f(t) \sin(\frac{2\pi n}{T} t) dt$$

$$b_n = \frac{4}{T} \int_0^{T/4} t \sin(\frac{2\pi n}{T} t) dt + \frac{4}{T} \int_{T/4}^{T/2} (-t + \frac{T}{2}) \sin(\frac{2\pi n}{T} t) dt$$

Ruaa Shallal Abbas

Use integration by parts.

$$b_n = \frac{4}{T} \left[2 \cdot \left(\frac{T}{2\pi n} \right)^2 \sin\left(\frac{n\pi}{2} \right) \right] = \frac{2T}{n^2 \pi^2} \sin\left(\frac{n\pi}{2} \right)$$

 $b_n = 0$ when *n* is even.

Therefore, the Fourier series is

$$\frac{2T}{\pi^2} \left[\sin\left(\frac{2\pi}{T}t\right) - \frac{1}{3^2} \sin\left(\frac{6\pi}{T}t\right) + \frac{1}{5^2} \sin\left(\frac{10\pi}{T}t\right) - \cdots \right]$$

Ruaa Shallal Abbas

Ruaa Shallal Abbas

$$f(\theta) = a_0 + \sum_{n=1}^{\infty} a_n \cos n \,\theta + \sum_{n=1}^{\infty} b_n \sin n \,\theta$$

Let us utilize the Euler formulae.

$$\cos\theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$$

$$\sin\theta = \frac{e^{j\theta} - e^{-j\theta}}{2i}$$

The *n*th harmonic component of (1) can be expressed as:

Ruaa Shallal Ab

bas

 $a_n \cos n \,\theta + b_n \sin n \,\theta$

$$= a_n \frac{e^{jn\theta} + e^{-jn\theta}}{2} + b_n \frac{e^{jn\theta} - e^{-jn\theta}}{2i}$$
$$= a_n \frac{e^{jn\theta} + e^{-jn\theta}}{2} - ib_n \frac{e^{jn\theta} - e^{-jn\theta}}{2}$$

$$= \left(\frac{a_n - jb_n}{2}\right)e^{jn\theta} + \left(\frac{a_n + jb_n}{2}\right)e^{-jn\theta}$$

Ruaa Shallal Abbas

Denoting

$$c_n = \left(\frac{a_n - jb_n}{2}\right)$$
, $c_{-n} = \left(\frac{a_n + jb_n}{2}\right)$

and $c_0 = a_0$

 $a_n \cos n \,\theta + b_n \sin n \,\theta$ $= c_n e^{jn\theta} + c_{-n} e^{-jn\theta}$

The Fourier series for $f(\theta)$ can be expressed as:

$$f(\theta) = c_0 + \sum_{n=1}^{\infty} (c_n e^{jn\theta} + c_{-n} e^{-jn\theta})$$
$$= \sum_{n=-\infty}^{\infty} c_n e^{jn\theta}$$

The coefficients can be evaluated in the following manner.

Ruaa Shallal Ab

$$c_n = \left(\frac{a_n - jb_n}{2}\right)$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) \cos n\,\theta d\theta - \frac{j}{2\pi} \int_{-\pi}^{\pi} f(\theta) \sin n\,\theta d\theta$$

Ruaa Shallal Abbas

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) (\cos n\theta - j\sin n\theta) d\theta$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) e^{-jn\theta} d\theta$$

$$c_{-n} = \left(\frac{a_n + jb_n}{2}\right)$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) \cos n\theta d\theta + \frac{j}{2\pi} \int_{-\pi}^{\pi} f(\theta) \sin n\theta d\theta$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) (\cos n\theta + j\sin n\theta) d\theta$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) e^{jn\theta} d\theta$$

$$c_0 = \left(\frac{a_0}{2}\right) \qquad \qquad c_n = \left(\frac{a_n - jb_n}{2}\right) \qquad \qquad c_{-n} = \left(\frac{a_n + jb_n}{2}\right)$$

Note that c_{-n} is the complex conjugate of c_n . Hence we may write that

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) e^{-jn\theta} d\theta \qquad n = 0, \ \pm 1, \ \pm 2, \ \cdots \qquad \text{Or} \qquad C_n = \frac{1}{2\pi} \int_{0}^{2\pi} f(x) \cdot e^{-inx} dx$$

Ruaa Shallal Ab

The complex form of the Fourier series of $f(\theta)$ with period 2π is:

$$f(\theta) = \sum_{n=-\infty}^{\infty} c_n e^{jn\theta}$$

Using complex form, find the Fourier series of the function

 $f(\theta) = \begin{cases} -1 & -\pi < \theta < 0 \\ 1 & 0 < \theta < \pi \end{cases}$

Sol:

 $egin{aligned} c_0 &= rac{1}{2\pi} \int\limits_{-\pi}^{\pi} f\left(x
ight) dx = rac{1}{2\pi} \left[\int\limits_{-\pi}^{0} (-1) \, dx + \int\limits_{0}^{\pi} dx
ight] = rac{1}{2\pi} igg[(-x) igg|_{-\pi}^{0} + x igg|_{0}^{\pi} igg] \ &= rac{1}{2\pi} (- arkappa' + arkappa') = 0, \end{aligned}$

 $c_{n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx = \frac{1}{2\pi} \left[\int_{-\pi}^{0} (-1) e^{-inx} dx + \int_{0}^{\pi} e^{-inx} dx \right]$ $= \frac{1}{2\pi} \left[-\frac{\left(e^{-inx}\right)\Big|_{-\pi}^{0}}{-in} + \frac{\left(e^{-inx}\right)\Big|_{0}^{\pi}}{-in} \right] = \frac{i}{2\pi n} \left[-\left(1 - e^{in\pi}\right) + e^{-in\pi} - 1 \right]$

 $egin{aligned} &=rac{i}{2\pi n}\left[e^{in\pi}+e^{-in\pi}-2
ight]=rac{i}{\pi n}\left[rac{e^{in\pi}+e^{-in\pi}}{2}-1
ight]=rac{i}{\pi n}[\cos n\pi-1]\ &=rac{i}{\pi n}\left[(-1)^n-1
ight]. \end{aligned}$