NAJAF COLLEGE OF TECHNOLOGY DEPARTMENT OF AVIONICS ENGINEERING

DIGITAL SIGNAL PROCESSING $3^{\text {rd }}$ YEAR

BY
RUAA SHALLAL ANOOZ

LINEAR DIFFERENCE EQUATIONS

1. First order homogeneous equation:

We consider an equation of the form:

$$
x_{n+1}-a x_{n}=0
$$

where $\boldsymbol{x}_{\boldsymbol{n}}, \mathrm{n}=0 ; 1 ; 2 ; 3$; are unknown and a is fixed constant. This equation is called a first order homogeneous equation.

The term homogeneous means that the right hand side is zero.
The general solution is $\quad \boldsymbol{x}_{\boldsymbol{n}}=\boldsymbol{\alpha}^{\boldsymbol{n}} \boldsymbol{x}_{\mathbf{0}}$
Where $\boldsymbol{x}_{\mathbf{0}}$ is called the initial value

EXAMPLE

Find the function $\mathbf{f}(\mathbf{x}, \mathbf{y})=\mathbf{2} \boldsymbol{x}+\boldsymbol{y}$ is homogeneous or not? Sol:

$$
\begin{gathered}
f(\alpha \mathbf{x}, \alpha \mathbf{y})=2(\alpha x)+(\alpha y) \\
=\alpha(2 x+y) \\
=\alpha f(\mathbf{x}, \mathbf{y})
\end{gathered}
$$

The function is homogeneous of degree 1

EXAMPLE

Find the function $f(x, y)=x^{2}+y^{2}$ is homogeneous or not? Sol:

$$
\begin{gathered}
f(\alpha \mathbf{x}, \alpha \mathbf{y})=(\alpha x)^{2}+(\alpha y)^{2} \\
=\alpha^{2}\left(x^{2}+y^{2}\right) \\
=\alpha^{2} \mathbf{f}(\mathbf{x}, \mathbf{y})
\end{gathered}
$$

The function is homogeneous of degree 2

EXAMPLE

Find the function $f(x, y)=\boldsymbol{x}^{\mathbf{3}}-\boldsymbol{y}^{\mathbf{2}}$ is homogeneous or not?
Sol:

$$
\begin{gathered}
\mathbf{f}(\alpha \mathbf{x}, \alpha \mathbf{y})=(\alpha x)^{3}-(\alpha y)^{2} \\
=\alpha^{3} x^{3}+\alpha^{2} y^{2}
\end{gathered}
$$

The function is not homogeneous because which does not equal $\boldsymbol{\alpha}^{\boldsymbol{n}} \mathbf{f}(\mathbf{x}, \mathbf{y})$ for any n .

EXAMPLE

Solve the following differential equation, the initial value of $x(0)=3$

$$
\mathbf{x}(\mathbf{n}+1)=-\mathbf{x}(\mathbf{n})
$$

Sol:

we can write the equation as :

$$
x(n+1)+x(n)=0
$$

This the first order homogeneous equation
So the solution will be as:

$$
\begin{aligned}
& x_{n}=\alpha^{n} x_{0} \\
= & (-1)^{n} * 3
\end{aligned}
$$

LINEAR DIFFERENCE EQUATIONS

2. First order inhomogeneous equation:

Let us consider an equation of the form:

$$
a x_{n}+b x_{n-1}=c
$$

where $\boldsymbol{c}_{\boldsymbol{n}}$ is a given sequence and $\boldsymbol{x}_{\boldsymbol{n}}$ is unknown. This equation is called inhomogeneous equation because the term $\boldsymbol{c}_{\boldsymbol{n}}$.

The general solution of $\boldsymbol{a} \boldsymbol{x}_{\boldsymbol{n}}+\mathbf{b} \boldsymbol{x}_{\boldsymbol{n}-\mathbf{1}}=\boldsymbol{c}$ is:

$$
x_{n}=a^{n} x_{0}+c \frac{a^{n}-1}{a-1}
$$

EXAMPLE

Solve the following differential equation, the initial value of $x(0)=3$

$$
-x(n+1)=-x(n)+4
$$

Sol:

we can write the equation as :

$$
-x(n+1)+x(n)=4
$$

This the first order inhomogeneous equation
So the solution will be as:

$$
x_{n}=a^{n} x_{0}+c \frac{a^{n}-1}{a-1}
$$

$$
\begin{aligned}
& =(-1)^{n} * 3+4^{*} \frac{(-1)^{n}-1}{-1-1}=(-1)^{n} * 3-2\left[(-1)^{n}-1\right] \\
& =(-1)^{n}+2
\end{aligned}
$$

EXAMPLE

Solve the following differential equation, the initial value of $x(0)=5$

$$
x(n+1)=2 x(n)+n
$$

Sol:

we can write the equation as :

$$
x(n+1)-2 x(n)=n
$$

This the first order inhomogeneous equation
So the solution will be as:

$$
\begin{aligned}
x_{n} & =a^{n} x_{0}+\mathrm{c} \frac{a^{n}-1}{a-1} \\
& =(2)^{n} * 5+\mathrm{n}^{*} \frac{(2)^{n}-1}{2-1}=(2)^{n} * 5+\mathrm{n}\left((2)^{n}-1\right)
\end{aligned}
$$

LINEAR CONSTANT COEFFICIENT DIFFERENCE EQUATIONS

A subclass of linear shift invariant systems are those for which the input $x(n)$ and output $\mathrm{y}(\mathrm{n})$ satisfy an $\mathrm{N}^{\text {th }}$ order linear constant coefficient difference equation, given by

$$
\sum_{k=0}^{N} a_{k} y(n-k)=\sum_{r=0}^{M} b_{r} x(n-r), a_{0} \neq 0
$$

If the system is causal, then we can rearrange the equation above to provide a computational realization of the system as follows:

$$
y(n)=-\sum_{k=1}^{N} \frac{a_{k}}{a_{0}} y(n-k)+\sum_{r=0}^{M} \frac{b_{r}}{a_{0}} x(n-r)
$$

EXAMPLE

Solve the following difference equation for $y(n)$, assuming $y(n)=0$ for all $n<0$ and $x(n)=\delta(n)$.

$$
y(n)-a y(n-1)=x(n)
$$

This corresponds to calculate the response of the system when excited by an impulse, assuming zero initial conditions.

Solution:

$y(n)-a y(n-1)=x(n)$
Evaluating when $n=0, \quad y(0)=a y(-1)+x(0)=1$

$$
\begin{array}{ll}
\mathrm{n}=1, & \mathrm{y}(1)=\mathrm{ay}(0)+\mathrm{x}(1)=\mathrm{a} \\
\mathrm{n}=2, & \mathrm{y}(2)=\mathrm{a} \mathrm{y}(1)+\mathrm{x}(2)=\mathrm{a}^{2}
\end{array}
$$

Continuing this process it is easy to see for all $n \geq 0$ that $\mathbf{y}(\mathbf{n})=\mathbf{a}^{\mathbf{n}}$
Since the response of the system for $\mathrm{n}<0$ is defined to be zero, the unit sample RESPONSE becomes

$$
\mathbf{h}(\mathbf{n})=\mathbf{a}^{\mathbf{n}} \mathbf{u}(\mathbf{n})
$$

EXAMPLE

Given the first order linear constant coefficient difference equation

$$
\mathrm{y}(\mathrm{n})=\mathrm{ay}(\mathrm{n}-1)+\mathrm{x}(\mathrm{n})
$$

find the impulse response of the system by first finding the system function $\mathrm{H}(\mathrm{z})$ and then taking the inverse transform. Assuming the system is causal.

Solution:

$$
\begin{aligned}
& y(n)=a y(n-1)+x(n) \\
& Y(z)=a z^{-1} Y(z)+X(z) \quad \rightarrow \quad Y(z)\left(1-a z^{-1}\right)=X(z) \\
& H(z)=\frac{Y(z)}{X(z)}=\frac{1}{1-a z^{-1}}=\frac{z}{z-a}
\end{aligned}
$$

By the causality requirement, the inverse transform of $\mathrm{H}(\mathrm{z})$ is a positive time exponential and with the $\mathrm{ROCz}>\mathrm{a}$, then, $h(n)$ becomes

$$
\mathbf{h}(\mathbf{n})=\mathbf{z}^{-1}\left\{\frac{z}{z-a}\right\}=\mathbf{a}^{\mathrm{n}} \mathbf{u}(\mathrm{n})
$$

TRANSFER FUNCTION (SYSTEM FUNCTION)

The output $y(n)$ of LTI system to an input sequence $x(n)$ can be obtained by computing the convolution of $x(n)$ with the unit sample (Impulse) response $h(n)$ of the system.

$$
y(n)=h(n) * x(n)
$$

Expressing this relationship in the z-domain as

$$
Y(z)=H(z) X(z)
$$

Impulse Response:

$$
\mathbf{H}(\mathbf{z})=\frac{\mathbf{Y}(\mathbf{z})}{\mathbf{X}(\mathbf{z})}
$$

The LTI system can be described by means of a constant coefficient linear difference equation as follows:

TRANSFER FUNCTION (SYSTEM FUNCTION)

$$
\begin{aligned}
& y(n)=\sum_{k=0}^{N} b(k) x(n-k)-\sum_{k=1}^{M} a(k) y(n-k) \\
& Y(z)=\sum_{k=0}^{N} b(k) z^{-k} X(z)-\sum_{k=1}^{M} a(k) z^{-k} Y(z)
\end{aligned}
$$

The transfer function of the LTI system,

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{\sum_{k=0}^{N} b(k) z^{-k}}{1+\sum_{k=1}^{M} a(k) z^{-k}}
$$

EXAMPLE

Find the impulse response of the system $\mathbf{y}(\mathbf{n})=\mathbf{x}(\mathbf{n}+\mathbf{1})+\mathbf{x}(\mathbf{n})+\mathbf{x}(\mathbf{n} \mathbf{- 1})$, then find the system function in z -domain.

Solution:

$$
\begin{aligned}
& y(n)=x(n+1)+x(n)+x(n-1) \\
& \mathrm{Y}(\mathrm{z})=\mathrm{X}(\mathrm{z}) z^{1}+\mathrm{X}(\mathrm{z})+\mathrm{X}(\mathrm{z}) z^{-1} \\
& \begin{array}{lr}
\mathrm{Y}(\mathrm{z})=\mathrm{X}(\mathrm{z})\left[z^{1}+1+z^{-1}\right] & \text { system response } \\
\mathrm{H}(\mathrm{z})=\frac{Y(z)}{X(z)}=z^{1}+1+z^{-1} & \text { system function }
\end{array}
\end{aligned}
$$

EXAMPLE

Find the difference equation realization and the response of the system represented by the following causal system function $\mathrm{H}(\mathrm{z})=\frac{(z+1)}{\left(z^{2}-2 z+3\right)}$

Solution:

$$
\mathrm{H}(\mathrm{z})=\frac{Y(z)}{X(z)}=\frac{(z+1)}{\left(z^{2}-2 z+3\right)}=\frac{z^{-1}+z^{-2}}{1-2 z^{-1}+3 z^{-2}} ;
$$

By taking the z^{-1} yields the difference equation

$$
\begin{aligned}
& y(n)-2 y(n-1)+3 y(n-2)=x(n-1)+x(n-2) \\
& y(n)=2 y(n-1)-3 y(n-2)+x(n-1)+x(n-2)
\end{aligned}
$$

