AL FURAT AL AWSAT TECHNICAL UNIVERSITY
NAJAF COLLEGE OF TECHNOLOGY DEPARTMENT OF AVIONICS ENGINEERING

DIGITAL SIGNAL PROCESSING $3^{\text {rd }}$ YEAR

BY

RUAA SHALLAL ANOOZ

OPERATIONS ON CONTINUOUS TIME SIGNALS

- Addition of continuous time signals

1. Point-by-point addition of multiple signals

- Move from left to right (or vice versa), and add the value of each signal together to achieve the final signal $\mathrm{y}(\mathrm{t})=x_{1}(\mathrm{t})+x_{2}(\mathrm{t})$

2. Graphical solution

- Plot each individual portion of the signal (break into parts)
- Add the signals point by point

OPERATIONS ON CONTINUOUS TIME SIGNALS

- Example:

OPERATIONS ON CONTINUOUS TIME SIGNALS

- subtraction of continuous time signals
subtraction of two signals is nothing but subtraction of their corresponding amplitudes.

OPERATIONS ON CONTINUOUS TIME SIGNALS

- Example:- Sketch $y(t)=u(t)-u(t-2)$

OPERATIONS ON CONTINUOUS TIME SIGNALS

- multiplication of continuous time signals

1. Point-by-point multiplication of the values of each signal $\mathrm{y}(\mathrm{t})=x_{1}(\mathrm{t}) x_{2}(\mathrm{t})$
2. Graphical solution

- Plot each individual portion of the signal (break into parts)
- Multiply the signals point by point

OPERATIONS ON CONTINUOUS TIME SIGNALS

- Example:-

OPERATIONS ON CONTINUOUS TIME SIGNALS

Example:- Sketch $y(t)=u(t) \cdot u(t-2)$

OPERATIONS ON CONTINUOUS TIME SIGNALS

- Scaling Time scaling
 Amplitude scaling

- Time scaling: is simply the multiplication of a time of a signal by a positive or a negative constant. In the case of analog signals, this operation is usually called Compression if the magnitude of the multiplying constant is greater than one. If the magnitude of the multiplying constant is less than one, the operation is called Expansion. Thus, if $\mathrm{x}(\mathrm{t})$ is an analog signal, the scaling operation generates a signal $\mathrm{y}(\mathrm{t})=\mathrm{x}(\alpha \mathrm{t})$, where α is the multiplying constant and not equal zero.
- Amplitude scaling: is simply the multiplication of the amplitude of a signal by a positive or a negative constant. In the case of analog signals, this operation is usually called amplification if the magnitude of the multiplying constant, called gain, is greater than one. If the magnitude of the multiplying constant is less than one, the operation is called attenuation. Thus, if $\mathrm{x}(\mathrm{t})$ is an analog signal, the scaling operation generates a signal $y(t)=\beta x(t)$, where β is the multiplying constant.

EXAMPLES

EXAMPLES

(a)

(c)

(b)

OPERATIONS ON CONTINUOUS TIME SIGNALS

- Shifting
 Time Shifting
 Amplitude Shifting

- Time shifting: it is mean add a constant to the time of a signal. In the case of analog signals, this operation is usually called Left Shifting (Time Advance) if the magnitude of constant is less than zero. If the magnitude of the constant is greater than zero, the operation is called Right Shifting (Time Delay).
$\mathrm{y}(\mathrm{t})=\mathrm{x}(\mathrm{t}-\alpha)$, where α is the constant.
- Amplitude Shifting: it is mean add a constant to a signal. $y(t)=x(t)+\alpha$, where α is the constant.

EXAMPLES

(a)

(b)

OPERATION ON CONTINUOUS TIME SIGNALS

- Reversal (fold)

Time Reversal
Amplitude Reversal

- Time Reversal: It is a special case of time scaling when $\alpha=-1, \mathrm{y}(\mathrm{t})=\mathrm{x}(\alpha \mathrm{t})$

$$
y(t)=x(-t)
$$

- Amplitude Reversal: It is a special case of amplitude scaling when $\beta=-1, y(t)=\beta \mathbf{x}(t)$
$y(t)=-x(t)$.

EXAMPLE

EXAMPLE

1. Consider the signal $x(t)$ shown in Figure (a). Let us now determine the transformed signal $y(t)=x(a t-b)$ where $a=2$ and $b=1$. Sol:

First, we consider the shift-then-scale method. In this case, we first shift the signal $x(t)$ by $b=1$. This yields the signal in Figure (b). Then, we scale this new signal by $a=2$. in order to obtain $y(t)$ as shown in Figure (c).

Another sol:

First, we consider the scale-then-shift method. In this case, we first scale the signal $x(t)$ by $a=2$. This yields the signal in Figure (d). Then, we shift this new signal by $b=1$. in order to obtain $y(t)$ as shown in Figure (e).

(a)

(b)

(c)

(d)

(e)

OPERATIONS ON DISCRETE TIME SIGNALS

- Addition and Subtraction of Discrete-Time Signals

- In the discrete time case, the sum of two sequences $x_{1}(n)$ and $x_{2}(n)$ can be obtained by adding the corresponding sample values. Similarly, the difference of the two sequences $x_{1}(n)$ and $x_{2}(n)$ can be obtained by subtracting each sample of one signal from the corresponding sample of the other signal.
- Example:- let $x_{1}(n)=\{2,1,3,5,2\}$ and $x_{2}(n)=\{1,4,2,1,-3\}$ then the addition of discrete-time signals is,
$x_{1}(n)+x_{2}(n)=\{2+1,1+4,3+2,5+1,2-3\}=\{3,5,5,6,-1\}$
- Similarly, the subtraction of discrete-time signals is,
$x_{1}(n)-x_{2}(n)=\{2-1,1-4,3-2,5-1,2+3\}=\{1,-3,1,4,5\}$

OPERATIONS ON DISCRETE TIME SIGNALS

- Multiplication of Discrete-Time Signals

- In the discrete time case, the multiplication of two sequences $x_{1}(n)$ and $x_{2}(n)$ can be obtained by multiply the corresponding sample values.
- Example:- let $x_{1}(n)=\{2,1,3,5,2\}$ and $x_{2}(n)=\{1,4,2,1,-3\}$ then the multiplication of discrete-time signals is,
$x_{1}(n) x_{2}(n)=\{2 * 1,1 * 4,3 * 2,5 * 1,2 *-3\}=\{2,4,6,5,-6\}$

OPERATIONS ON DISCRETE TIME SIGNALS

- Scaling
\longrightarrow Time scaling
- Time scaling: is simply the multiplication of a time of a signal by a positive or a negative constant. In the case of discrete signals, this operation is usually called Compression if the magnitude of the multiplying constant is greater than one. If the magnitude of the multiplying constant is less than one, the operation is called Expansion. Thus, if $\mathrm{x}[\mathrm{n}]$ is an discrete signal, the scaling operation generates a signal $\mathrm{y}[\mathrm{n}]=\mathrm{x}[\alpha \mathrm{n}]$, where α is the multiplying constant.
- Amplitude scaling: is simply the multiplication of the amplitude of a signal by a positive or a negative constant. In the case of discrete signals, this operation is usually called amplification if the magnitude of the multiplying constant is greater than one. If the magnitude of the multiplying constant is less than one, the operation is called attenuation. Thus, if $\mathrm{x}[\mathrm{n}]$ is an discrete signal, the scaling operation generates a signal $y[n]=\beta x[n]$, where β is the multiplying constant.

OPERATIONS ON DISCRETE TIME SIGNALS

1. Time compression (decimation)

EX: $\quad X[n]=\{5,3,7, \underline{\mathbf{8}},-2,4,9\} \quad a=2$
Sol: $\mathrm{x}[2 \mathrm{n}]$ when $\mathrm{n}=0 \longrightarrow \mathrm{x}[2 * 0]=\mathrm{x}[0]=8$
When $\mathrm{n}=1 \Longleftrightarrow \mathrm{x}[2 * 1]=\mathrm{x}[2]=4$, when $\mathrm{n}=2 \longrightarrow \mathrm{x}[2 * 2]=\mathrm{x}[4]=0$
When $\mathrm{n}=-1 \Longleftrightarrow \mathrm{x}\left[2^{*}-1\right]=\mathrm{x}[-2]=3$, when $\mathrm{n}=-2 \Longrightarrow \mathrm{x}\left[2^{*}-2\right]=\mathrm{x}[-4]=0 \Longrightarrow \mathrm{X}[2 \mathrm{n}]=\{3, \underline{\mathbf{8}}, 4\}$
2. Time Expansion (Interpolation)

Ex: $\quad x[n]=\{4, \mathbf{3}, 5\} \quad a=0.5$
Sol: $\mathrm{x}[0.5 \mathrm{n}]$ when $\mathrm{n}=0 \longrightarrow \mathrm{x}\left[0.5^{*} 0\right]=\mathrm{x}[0]=3$
when $\mathrm{n}=1 \longleftrightarrow \mathrm{x}\left[0.5^{*} 1\right]=\mathrm{x}[0.5]=0$, when $\mathrm{n}=2 \quad \longrightarrow \mathrm{x}[0.5 * 2]=\mathrm{x}[1]=5$
When $\mathrm{n}=-1 \longleftrightarrow \mathrm{x}\left[0.5^{*}-1\right]=\mathrm{x}[-0.5]=0$, when $\mathrm{n}=-2 \quad \mathrm{x}\left[0.5^{*}-2\right]=\mathrm{x}[-1]=4 \quad$ We stopped here
When $\mathrm{n}=-3 \longrightarrow \mathrm{x}\left[0.5^{*}-3\right]=\mathrm{x}[-1.5]=0$ because the result be always zeros

OPERATIONS ON DISCRETE TIME SIGNALS

1. Amplitude amplification

EX: $\quad X[n]=\{5,3,7, \underline{\mathbf{8}},-2,4,9\} \quad a=2$
Sol: ax[n]

$$
2 x[n]=\{10,6,14, \underline{16},-4,8,18\}
$$

2. Amplitude attenuation
$E X: \quad X[n]=\{5,3,7, \underline{\mathbf{8}},-2,4,9\} \quad a=0.5$
Sol: ax[n]
$0.5 x[n]=\{2.5,1.5,3.5, \underline{4},-1,2,4.5\}$

OPERATIONS ON DISCRETE TIME SIGNALS

- Shifting

Time Shifting
 Amplitude Shifting

- Time shifting: it is mean add a constant to the time of a signal. In the case of discrete signals, this operation is usually called Left Shifting (Time Advance) if the magnitude of constant is less than zero. If the magnitude of the constant is greater than zero, the operation is called Right Shifting (Time Delay).
$\mathrm{y}[\mathrm{n}]=\mathrm{x}[\mathrm{n}-\alpha]$, where α is the constant.
- Amplitude Shifting: it is mean add a constant to a signal. $\mathrm{Y}[\mathrm{n}]=\mathrm{x}[\mathrm{n}]+\alpha$, where α is the constant.

OPERATIONS ON DISCRETE TIME SIGNALS

1. Right Shifting (Time Delay)

Ex: $\quad x[n]=\{2,3,2,1,3\}$
Sol: $\mathrm{x}[\mathrm{n}-2]$ when $\mathrm{n}=0$

$$
\mathrm{x}[0-2]=\mathrm{x}[-2]=2, \quad \text { when } \mathrm{n}=1
$$

$$
x[1-2]=x[-1]=3
$$

When $\mathrm{n}=2$
When $\mathrm{n}=4$
$x[2-2]=x[0]=2$, when $n=3$
$x[4-2]=x[2]=3$, when $n=-1$

$$
\begin{aligned}
& x[3-2]=x[1]=1 \\
& x[-1-2]=x[-3]=0
\end{aligned}
$$

$$
\mathrm{x}[\mathrm{n}-2]=\{\underline{\mathbf{2}}, 3,2,1,3\}
$$

2. Left Shifting (Time Advance)

Ex: $\quad x[n]=\{2,3,2,1,3\}$

Sol: $\mathrm{x}[\mathrm{n}+2]$ when $\mathrm{n}=0$
When $\mathrm{n}=-1$
When $\mathrm{n}=-3$

$$
x[0+2]=x[2]=3, \text { when } n=1
$$

$$
x[-1+2]=x[1]=1 \text {, when } n=-2
$$

$$
x[-3+2]=x[-1]=3 \text {, when } n=-4
$$

$$
\begin{aligned}
& x[1+2]=x[3]=0 \\
& x[-2+2]=x[0]=2 \\
& x[-4+2]=x[-2]=2
\end{aligned}
$$

$$
x[\mathrm{n}+2]=\{2,3,2,1, \underline{\mathbf{3}}\}
$$

OPERATIONS ON DISCRETE TIME SIGNALS

1. Upward shifting
$E X: \quad X[n]=\{5,3,7, \underline{\mathbf{8}},-2,4,9\} \quad a=2$
Sol: $x[n]+a \quad x[n]+2=\{7,5,9, \underline{\mathbf{1 0}}, 0,6,11\}$
2. Downward shifting

EX: $X[n]=\{5,3,7, \underline{\mathbf{8}},-2,4,9\} \quad a=-2$
Sol: $x[n]-a \quad x[n]-2=\{3,1,5, \underline{\mathbf{6}},-4,2,7\}$

OPERATIONS ON DISCRETE TIME SIGNALS

- Reversal (fold)
\longrightarrow Time Reversal

Amplitude Reversal

- Time Reversal: It is a special case of time scaling when $\alpha=-1, y[n]=x[\alpha \mathrm{n}]$

$$
\mathrm{y}[\mathrm{n}]=\mathrm{x}[-\mathrm{n}] .
$$

- Amplitude Reversal: It is a special case of amplitude scaling when $\beta=-1, y[n]=\beta x[n]$ $y[n]=-x[n]$.

OPERATIONS ON DISCRETE TIME SIGNALS

- TIME REVERSAL when $\mathrm{a}=-1$

Ex: $\quad \mathrm{x}[\mathrm{n}]=\{1, \underline{\mathbf{2}}, 4,5\}$
Sol:
$\mathrm{x}[\mathrm{a} * \mathrm{n}] \longleftrightarrow \mathrm{x}[-\mathrm{n}] \longmapsto$ when $\mathrm{n}=0 \quad \mathrm{x}[-1 * 0]=\mathrm{x}[0]=2$
When $\mathrm{n}=1 \quad \mathrm{x}[-1 * 1]=\mathrm{x}[-1]=1$, when $\mathrm{n}=2 \quad \mathrm{x}[-1 * 2]=\mathrm{x}[-2]=0$
When $\mathrm{n}=-1 \longleftrightarrow \mathrm{x}[-1 *-1]=\mathrm{x}[1]=4$, when $\mathrm{n}=-2 \longleftrightarrow \mathrm{x}[-1 *-2]=\mathrm{x}[2]=5$

$$
x[-n]=\{5,4, \underline{2}, 1\}
$$

- AMPLITUDE REVERSAL when $\mathrm{a}=-1$

EX: $\quad X[n]=\{5,3,7, \underline{\mathbf{x}},-2,4,9\} \quad a=-1$
Sol: ax[n]

$$
-x[n]=\{-5,-3,-7, \underline{-8}, 2,-4,-9\}
$$

EXAMPLE

```
IF X(N)={2, 3,4, 5, 6, 7}.FIND 1.Y(N)=X(N-3) 2. X(N+2) 3. X(-N) 4. X(-N+1) 5. X(-N-2)
```


SOL:

1. $\mathrm{Y}(\mathrm{N})=\mathrm{X}(\mathrm{N}-3)=\{2,3,4,5,6,7\}$ SHIFT $\mathrm{X}(\mathrm{N})$ RIGHT 3 UNITS.
2. $\mathrm{X}(\mathrm{N}+2)=\{2,3,4,5,6,7\}$ SHIFT $\mathrm{X}(\mathrm{N})$ LEFT 2 UNITS.
3. $X(-N)=\{7,6,5,4,3,2\}$ FOLD $X(N)$ ABOUT $N=0$.
4. $\mathrm{X}(-\mathrm{N}+1)=\{7,6,5,4,3,2\}$ FOLD $\mathrm{X}(\mathrm{N})$, DELAY BY 1 .
5. $\mathrm{X}(-\mathrm{N}-2)=\{7,6,5,4,3,2\}$ FOLD $\mathrm{X}(\mathrm{N})$, ADVANCED BY 2 .

PARSEVAL'S THEOREM

$$
\int_{-\infty}^{\infty} w_{1}(t) w_{2} *(t) d t=\int_{-\infty}^{\infty} W_{1}(f) W_{2} *(f) d f
$$

If $w_{1}(t)=w_{2}(t)=w(t), \int_{-\infty}^{\infty}|w(t)|^{2} d t=\int_{-\infty}^{\infty}|W(f)|^{2} d f \equiv E$.
E is the energy of $w(t)$.

Energy spectraldensity (ESD) : $\mathbb{E}(f)=|W(f)|^{2} \quad$ (unit $=$ joules per hertz)
Total normalized energy: $E=\int_{-\infty}^{\infty}|E(f)|^{2} d f$

ENERGY AND POWER SIGNALS

We will use abroad definition of power and energy that applies to any signal $x(t)$ or $x[n]$

*Signal Energy

$E=\int_{-\infty}^{\infty}|x(t)|^{2} d t$
and in discrete time

$$
E=\sum_{n=-\infty}^{\infty}|x[n]|^{2}
$$

- Has $\mathbf{0}<\boldsymbol{E}<\infty ; \boldsymbol{P}=\mathbf{0}$ A signal will have finite amount of energy if it is absolutely integrable *Signal Power
$P=\lim _{t \rightarrow \infty} \frac{1}{T} \int_{\frac{T}{2}}^{\frac{T}{2}}|x(t)|^{2} d t \quad$ and in discrete time $\quad P=\lim _{N \rightarrow \infty} \frac{1}{2 N} \sum_{n=-N}^{N}|x[n]|^{2}$
Has $\mathbf{0}<\boldsymbol{p}<\infty ; \boldsymbol{E}=\infty$
- A signal can be an energy signal, a power signal or neither type.

SOLVED PROBLEMS

Example: find the energy of a rectangular plus shown in figure below :-

$$
\mathrm{x}(t)=\left\{\begin{array}{l}
A-\frac{T}{2}<t<\frac{T}{2} \\
0 \quad \text { other wise }
\end{array}\right.
$$

Sol:-

$$
\begin{aligned}
\mathrm{E} & =\int_{-\infty}^{\infty}|x(t)|^{2} d t=\int_{-\frac{T}{2}}^{\frac{T}{2}}|x(t)|^{2} d t=\int_{-\frac{T}{2}}^{\frac{T}{2}}|A|^{2} d t \\
& =\left.A^{2} \cdot \mathrm{~T}\right|_{-T / 2} ^{T}=A^{2}[t / 2-(-\mathrm{t} / 2)]
\end{aligned}
$$

$$
\mathrm{E}=A^{2} \cdot \mathrm{~T}
$$

