DIGITAL SIGNAL PROCESSING $3^{\text {rd }}$ YEAR

BY
RUAA SHALLAL ANOOZ

Z-TRANSFORM

\square The z-transform converts a discrete-time signal, which is a sequence of real or complex numbers, into a complex frequency-domain. It is a very important tool in describing and analyzing digital systems. It also offers the techniques for digital filter design and frequency analysis of digital signals.
\square The z-transform of a sequence $x(n)$, designated by $X(z)$ or $Z(x(n))$, is defined as:

$$
X(z)=Z(x(n))=\sum_{n=-\infty}^{\infty} x(n) z^{-n}
$$

\square Where, z is the complex variable, n is an integer time index.

$$
z=r e^{j \omega}
$$

r:magnitude

$$
z=r(\cos \omega+j \sin \omega)
$$

w : Angle or Phase
$\square X(z)=\cdots+x(-1) z^{1}+x(0) z^{-0}+x(1) z^{-1}+x(2) z^{-2}+\cdots$

Z-TRANSFORM

When $x(n)$ is defined for $n \geq 0$,ie. causal, one sided Z transform is given by:

$$
X(z)=Z(x(n))=\sum_{n=0}^{\infty} x(n) z^{-n}
$$

Region of Convergence (ROC)
Roc: represent the region that in which the function be finite. or it values of (7) that make The values of $x[z]$ Finite values

Notes on Roc:-
(1) if the signal be equal zero when $n<0$, Roc be always out of circle

Roc: $|z|>r_{1}$
ROC: $|z|>|a| \Longleftrightarrow$ causal system
(2) If the signal be egad zero when $n>0$, Roc be inside The circle

Roc: $|z|<r_{2}$
ROC: $|z|<|a| \Longleftrightarrow$ anti-causal system
(3) If the signal defined in negative \& positive parts, Roc be as showed below

$$
\text { ROC: }|b|<|z|<|a| \Longleftrightarrow \text { two-sided system (non-causal) }
$$

$$
\text { Roc: } r_{1}<|z|<r_{2}
$$

Ex/ Find $x[z]$ \& Roc of the function $x[n]=u_{[n]}$
sol.

$$
\begin{aligned}
x[z] & =\sum_{n=-\infty}^{\infty} x[n] \cdot z^{-n} \\
& =\sum_{n=0}^{\infty} z^{-n} \\
& =\sum_{n=0}^{\infty}(\bar{z})^{n}
\end{aligned}
$$

$$
=1+\bar{z}^{-1}+\bar{z}^{-2}+\bar{z}^{-3}+\cdots
$$

Note
If we have a sequence written

$$
a s: 1+a+a^{2}+a^{3}+\cdots
$$

we can write this sequence

$$
\text { as: } \frac{\text { First term }}{1-\text { Comm. ratio }}=\frac{1}{1-a}
$$

with Condition |C.R.|<1 $|a|<1$

$$
\begin{aligned}
& \therefore x[z]=1+\left(z^{-1}\right)^{1}+\left(z^{-1}\right)^{2}+\left(z^{-1}\right)^{3}+\cdots \\
& \left.\therefore x[z]=\frac{1}{1-\bar{z}^{-1}}=\frac{1}{1-\frac{1}{z}}\right] * z \\
& \therefore x[z]=\frac{z}{z-1} \\
& \left|z^{-1}\right|<1 \Rightarrow|z|>1
\end{aligned}
$$

$R_{0} C:|z|>1$

Ex let $x[n]=a^{n} u[n]$ Calculate $X[z]$ and Roc?

Sol.

$$
\begin{aligned}
X[z] & =\sum_{n=-\infty}^{\infty} a^{n} U[n] \cdot z^{-n} \\
\therefore X[z] & =\sum_{n=0}^{\infty} a^{n} z^{-n} \\
& =\sum_{n=0}^{\infty}\left(a \bar{z}^{-1}\right)^{n}
\end{aligned}
$$

$$
\begin{aligned}
& =1+a \bar{z}+(a \bar{z})^{2}+\cdots \\
& \therefore C \cdot R=a \cdot \bar{z} \\
& \left.\therefore x[z]=\frac{1}{1-a \bar{z}^{-1}}|\quad \therefore| \frac{a}{z} \right\rvert\,<1 \\
& \left.=\frac{1}{1-\frac{a}{z}}\right] * z \mid>a \\
& =\frac{z}{z-a} \\
& \text { Roc: }\left|a z^{-1}\right|<1
\end{aligned}
$$

Signal, $x[n]$

	Signal, $x[n]$	Z-transform, $X(z)$	ROC
1	$\delta[n]$	1	all z
2	$\delta\left[n-n_{0}\right]$	$z^{-n_{0}}$	$z \neq 0$
3	$u[n]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
4	$-u[-n-1]$	$\frac{1}{1-z^{-1}}$	$\|z\|<1$
5	$n u[n]$	$\frac{z^{-1}}{\left(1-z^{-1}\right)^{2}}$	$\|z\|>1$
6	$-n u[-n-1]$	$\frac{z^{-1}}{\left(1-z^{-1}\right)^{2}}$	$\|z\|<1$
7	$n^{2} u[n]$	$\frac{z^{-1}\left(1+z^{-1}\right)}{\left(1-z^{-1}\right)^{3}}$	$\|z\|>1$
8	$-n^{2} u[-n-1]$	$\frac{z^{-1}\left(1+z^{-1}\right)}{\left(1-z^{-1}\right)^{3}}$	$\|z\|<1$
9	$n^{3} u[n]$	$\frac{z^{-1}\left(1+4 z^{-1}+z^{-2}\right)}{\left(1-z^{-1}\right)^{4}}$	$\|z\|>1$
10	$-n^{3} u[-n-1]$	$\frac{z^{-1}\left(1+4 z^{-1}+z^{-2}\right)}{\left(1-z^{-1}\right)^{4}}$	$\|z\|<1$
11	$a^{n} u[n]$	$\frac{1}{1-a z^{-1}}$	$\|z\|>\|a\|$
12	$-a^{n} u[-n-1]$	$\frac{1}{1-a z^{-1}}$	$\|z\|<\|a\|$
13	$n a^{n} u[n]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|>\|a\|$
14	$-n a^{n} u[-n-1]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|<\|a\|$

$\frac{a z^{-1}\left(1+a z^{-1}\right)}{\left(1-a z^{-1}\right)^{3}}$	$\|z\|>\|a\|$
$\frac{a z^{-1}\left(1+a z^{-1}\right)}{\left(1-a z^{-1}\right)^{3}}$	$\|z\|<\|a\|$
$\frac{\frac{1}{\left(1-a z^{-1}\right)^{m}}, \text { for positive integer } m^{[13]}}{}$	$\|z\|>\|a\|$
$\frac{1}{\left(1-a z^{-1}\right)^{m}}$, for positive integer $m^{[13]]}$	$\|z\|<\|a\|$
$\frac{1-z^{-1} \cos \left(\omega_{0}\right)}{1-2 z^{-1} \cos \left(\omega_{0}\right)+z^{-2}}$	$\|z\|>1$
$\frac{z^{-1} \sin \left(\omega_{0}\right)}{1-2 z^{-1} \cos \left(\omega_{0}\right)+z^{-2}}$	$\|z\|>1$
$\frac{1-a z^{-1} \cos \left(\omega_{0}\right)}{1-2 a z^{-1} \cos \left(\omega_{0}\right)+a^{2} z^{-2}}$	$\|z\|>\|a\|$
$\frac{a z^{-1} \sin \left(\omega_{0}\right)}{1-2 a z^{-1} \cos \left(\omega_{0}\right)+a^{2} z^{-2}}$	$\|z\|>\|a\|$
Ruaa Shallal Anooz	

Example: Find Z-transform for the unit impulse sequence

Solution:

$$
X(z)=\sum_{n=-\infty}^{\infty} \delta[n] z^{-n}=z^{0}=1 . \quad \text { ROC: All } z
$$

Example: Find the Z-transform of the signal shown below:

Solution:

$$
\begin{aligned}
X(z) & =\sum_{n=-1}^{1} x[n] z^{-n} \\
& =\frac{1}{3} z+\frac{1}{3}+\frac{1}{3} z^{-1}
\end{aligned}
$$

Example: Find the Z-transform of the second order recursive filter, given:

Solution:

$$
\mathrm{h}[\mathrm{n}]=\left\{\begin{array}{cc}
\mathrm{r}^{\mathrm{n}} \cos \left(\mathrm{w}_{0} \mathrm{n}\right) & \mathrm{n} \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

$$
\begin{aligned}
H(z) & =\sum_{n=0}^{\infty} r^{n} \cos \left(w_{0} n\right) z^{-n}=\sum_{n=0}^{\infty} r^{n} \frac{e^{j w_{0} n}+e^{-j w_{0} n}}{2} z^{-n} \\
& =\frac{1}{2}\left[\sum_{n=0}^{\infty}\left(r e^{j w_{0}} Z^{-1}\right)^{n}+\sum_{n=0}^{\infty}\left(r e^{-j w_{0}} z^{-1}\right)^{n}\right] \quad=\frac{1}{2}\left[\frac{1}{1-r e^{j w_{0}} Z^{-1}}+\frac{1}{\left.1-r e^{-j w_{0} Z^{-1}}\right]}\right. \\
& =\frac{1}{2}\left[\frac{1-r e^{-j w_{0}} z^{-1}+1+r e^{j w_{0}} z^{-1}}{\left(1-r e^{j w_{0}} z^{-1}\right)\left(1-r e^{-j w_{0}} z^{-1}\right)}\right]=\frac{1-r \cos \left(w_{0}\right) z^{-1}}{1-2 r \cos \left(w_{0}\right) z^{-1}+r^{2} z^{-2}}
\end{aligned}
$$

Z-Transform Properties

1) Linearity

$$
A x_{1}[n]+B x_{2}[n] \leftrightarrow A X_{1}[z]+B X_{2}[z]
$$

2) Time-shifting
$x[n-a] \leftrightarrow X(z) z^{-a}$
3) Convolution
$x_{1}[n] \otimes x_{2}[n] \leftrightarrow X_{1}[z] . X_{2}[z]$
4) Differentiation
$n x[n] \leftrightarrow(-z) \frac{d X(z)}{d z}$
5) Multiplication by an exponential sequence:
$a^{n} x[n] \leftrightarrow X\left(\frac{Z}{a}\right)$

Example: Determine the Z-transform of the sequence given by: $\mathbf{y}[\mathbf{n}]=(\mathbf{n}+\mathbf{1}) \mathbf{a}^{\mathbf{r}} \mathbf{u}[\mathbf{n}]$ Solution:

$$
\overline{y(n)}=\alpha^{n} u[n]+n \alpha^{n} u[n]
$$

$$
\because \alpha^{n} u[n] \Leftrightarrow \frac{1}{1-\alpha z^{-1}}=\frac{z}{z-\alpha}
$$

$$
Y(z)=\frac{1}{1-\alpha z^{-1}}+(-z) \frac{d}{d z} \frac{1}{1-\alpha z^{-1}}
$$

$$
=\frac{1}{1-\alpha z^{-1}}+\frac{\alpha z^{-1}}{\left(1-\alpha z^{-1}\right)^{2}}=\frac{1}{\left(1-\alpha z^{-1}\right)^{2}}
$$

