FURAT AL AWSAT TECHNICAL UNIVERSITY NAJAF COLLEGE OF TECHNOLOGY DEPARTMENT OF AVIONICS ENGINEERING

DIGITAL SIGNAL PROCESSING 3rd YEAR

RUAA SHALLAL ANOOZ

BY

Z-TRANSFORM

□ The z-transform converts a discrete-time signal, which is a sequence of real or complex numbers, into a complex frequency-domain. It is a very important tool in describing and analyzing digital systems. It also offers the techniques for digital filter design and frequency analysis of digital signals.

 \Box The z-transform of a sequence x(n), designated by X(z) or Z(x(n)), is defined as:

$$X(z) = Z(x(n)) = \sum_{n=-\infty} x(n) z^{-n}$$

• Where, z is the complex variable, n is an integer time index.

$$Z = r e^{j\omega}$$
 $r_{i}mognitude$
 $w: Angle or Phase$
 $z = r(cos\omega + jsin\omega)$

 $\Box X(z) = \dots + x(-1)z^{1} + x(0)z^{-0} + x(1)z^{-1} + x(2)z^{-2} + \dots$

Z-TRANSFORM

 \Box When x(n) is defined for n \geq 0, i.e. causal, one sided Z transform is given by:

$$X(z) = Z(x(n)) = \sum_{n=0}^{\infty} x(n) z^{-n}$$

Region of Convergence (ROC)

Value

Notes on Roc :-

() if the Signal be equal Zero when n to, Roc be always out of circle Im(Z) > Re(z)

Roc: 121>ri

ROC: $|z| > |a| \iff$ causal system

Roc: IZI<rz

ROC: $|z| < |a| \iff$ anti-causal system

3 If the signal defined in negative & positive parts, Roc be as showen below

ROC: $|b| < |z| < |a| \iff$ two-sided system (non-causal)

Roc: r1 < 12 < r2

Ez Find XEZJ& Roc of the Function z[n] = U[n] $X[z] = \sum x[n] \cdot z^n$ Note n=-00 If we have a Sequence written = 5, ź as: 1+ a + a + a + ...we can write this sequence as: First term 1 1= Comm. ratio = 1-0 = 2 (=)" with Condition IC.R.1<1 101<1

• $X[z] = 1 + (z') + (z')^{2} + (z')^{3} + ...$: X[z] = Z z-1 12 <1 > 12 7

Roc: 12171

let xEn) = à UEnJ Calculate X[z] and Roc? $= 1 + \alpha \overline{z} + (\alpha \overline{z})^{2} + \cdots$ $\sim c.R = \alpha \cdot Z$ $\left|\frac{\alpha}{z}\right| < 1$ $X[z] = \int_{-\infty}^{\infty} \alpha' U[n] \cdot z'$ 08 X[Z]= 1 1- azi 00 1217 a $=\frac{1}{1-\alpha}$]*Z \vec{v} $X[z] = \sum_{n=1}^{\infty} a^n z^n$ AIm(Z) = Z-a >Re(Z) $= \sum_{n=1}^{\infty} (\alpha \bar{z}^{n})^{n}$ Roc: lozil<1 n Zo

	Signal, $x[n]$	Z- transform, $X(z)$	ROC	4.5	2 n []	$az^{-1}(1+az^{-1})$	
1	$\delta[n]$	1	all z	15	$n^2 a^n u[n]$	$(1-az^{-1})^3$ z	z > a
2	$\delta[n-n_0]$	z^{-n_0}	z eq 0		$-n^2a^nu[-n-1]$	$az^{-1}(1+az^{-1})$	z < a
3	u[n]	$\frac{1}{1-z^{-1}}$	z >1			$(1-az^{-1})^3$	z < a
4	-u[-n-1]	$\frac{1}{1-z^{-1}}$	z < 1	17	$igg({n+m-1\atop m-1}igg)a^nu[n]$	$rac{1}{(1-az^{-1})^m}$, for positive integer $m^{ extsf{[13]}}$	z > a
5	nu[n]	$\frac{z^{-1}}{(1-z^{-1})^2}$	z > 1	18	$(-1)^m\left(rac{-n-1}{m-1} ight)a^nu[-n-m]$	$rac{1}{(1-az^{-1})^m}$, for positive integer $m^{ extsf{[13]}}$	z < a
6	-nu[-n-1]	$\frac{z^{-1}}{(1-z^{-1})^2}$	z < 1	19	$\cos(\omega_0 n) u[n]$	$\frac{1-z^{-1}\cos(\omega_0)}{1-2z^{-1}\cos(\omega_0)+z^{-2}}$	z >1
7	$n^2u[n]$	$\frac{z^{-1}(1+z^{-1})}{(1-z^{-1})^3}$	z > 1	20	$\sin(\omega_0 n) u[n]$	$rac{z^{-1}\sin(\omega_0)}{1-2z^{-1}\cos(\omega_0)+z^{-2}}$	z > 1
8	$-n^2u[-n-1]$	$\frac{z^{-1}(1+z^{-1})}{(1-z^{-1})^3}$	z < 1	21	$a^n\cos(\omega_0n)u[n]$	$rac{1-az^{-1}\cos(\omega_0)}{1-2az^{-1}\cos(\omega_0)+a^2z^{-2}}$	z > a
9	$n^3u[n]$	$\frac{z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^4}$	z > 1	22	$a^n \sin(\omega_0 n) u[n]$	$rac{az^{-1}\sin(\omega_0)}{1-2az^{-1}\cos(\omega_0)+a^2z^{-2}}$	z > a
10	$-n^3u[-n-1]$	$\frac{z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^4}$	z < 1			$1-2az$ $\cos(\omega_0)+az$	
11	$a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > a				
12	$-a^nu[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a				
13	$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a				
14	$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a			Ruaa Shallal	Anooz

Example: Find Z-transform for the unit impulse sequence

Solution:

$$X(z) = \sum_{n=-\infty}^{\infty} \delta[n] z^{-n} = z^0 = 1.$$
 ROC: All z

Example: Find the **Z-transform** of the signal shown below:

Solution:

$$X(z) = \sum_{\substack{n=-1 \ n=-1}}^{1} x[n] z^{-n}$$
$$= \frac{1}{3}z + \frac{1}{3} + \frac{1}{3}z^{-1}$$

Z-Transform Properties 1) Linearity $Ax_1[n] + Bx_2[n] \leftrightarrow AX_1[z] + BX_2[z]$ 2) Time-shifting $x[n-a] \leftrightarrow X(z)z^{-a}$ 3) Convolution $x_1[n] \otimes x_2[n] \leftrightarrow X_1[z] X_2[z]$ 4) Differentiation $nx[n] \leftrightarrow (-z) \frac{dX(z)}{dz}$ 5) Multiplication by an exponential sequence: $a^n x[n] \leftrightarrow X\left(\frac{z}{a}\right)$

Example: Determine the **Z-transform** of the sequence given by: $y[n] = (n+1) \alpha^n u[n]$ **Solution:** $y(n) = \alpha^n u[n] + n\alpha^n u[n]$

 $\begin{aligned} &: \alpha^n u[n] \Leftrightarrow \frac{1}{1 - \alpha z^{-1}} = \frac{z}{z - \alpha} \\ Y(z) &= \frac{1}{1 - \alpha z^{-1}} + (-z)\frac{d}{dz}\frac{1}{1 - \alpha z^{-1}} \\ &= \frac{1}{1 - \alpha z^{-1}} + \frac{\alpha z^{-1}}{(1 - \alpha z^{-1})^2} = \frac{1}{(1 - \alpha z^{-1})^2} \end{aligned}$