NAJAF COLLEGE OF TECHNOLOGY DEPARTMENT OF AVIONICS ENGINEERING

DIGITAL SIGNAL PROCESSING $3^{\text {rd }}$ YEAR

BY
RUAA SHALLAL ANOOZ

INVERSE Z - TRANSFORM

Given a z-transform function $\mathrm{X}(\mathrm{z})$, the corresponding time domain sequence $\mathrm{x}(\mathrm{n})$ can be obtained using the inverse z-transform.

The inverse z-transform may be obtained by the following methods:

1- Using properties.

2- Partial fraction expansion method.

3- Power series expansion
(the solution is obtained by applying long division because the denominator can't be analyzed. It is not accurate method compared with the above methods)

4- Complex inversion integral

1. USING PROPERTIES

Example:- Find inverse Z transform of:
$X[Z]=2+4\left(\frac{Z}{Z-1}\right)-\frac{Z}{Z-0.5}$
Sol:-

$$
\begin{aligned}
\mathrm{x}[\mathrm{n}] & =2 Z^{-1}(1)+4 . Z^{-1}\left(\frac{Z}{Z-1}\right)-Z^{-1}\left(\frac{Z}{Z-0.5}\right) \\
& =2 . \delta[\mathrm{n}]+4 . \mathrm{U}[\mathrm{n}]-(0.5)^{n} . \mathrm{U}[\mathrm{n}]
\end{aligned}
$$

Example:- Find inverse Z transform of:

$$
X[Z]=\frac{1}{1-0.5 Z^{-1}}
$$

Sol:-
$\mathrm{x}[\mathrm{n}]=(0.5)^{n} . \mathrm{U}[\mathrm{n}]$

2. USING PARTIAL FRACTION EXPANSION

Example:-

Find the inverse transform of $X(z)=\frac{z}{3 z^{2}-4 z+1}$ for the ROC $|z|>1$

Sol:-

Dividing both sides by z leads to

$$
\frac{X(z)}{z}=\frac{1}{3 z^{2}-4 z+1}=\frac{1}{3\left(z^{2}-\frac{4}{3} z+\frac{1}{3}\right)}=\frac{1}{3(z-1)\left(z-\frac{1}{3}\right)}=\frac{A}{z-1}+\frac{B}{z-\frac{1}{3}}
$$

$$
\mathrm{A}=\frac{\mathrm{X}(\mathrm{z})}{\mathrm{z}}(\mathrm{z}-1) \left\lvert\, \rightarrow \mathrm{z}=1 \quad \rightarrow \quad \frac{1}{3\left(\mathrm{z}-\frac{1}{3}\right)}\right. ; \quad \mathrm{A}=1 / 2
$$

$$
\left.\mathrm{B}=\frac{\mathrm{X}(\mathrm{z})}{\mathrm{z}}\left(\mathrm{z}-\frac{1}{3}\right) \right\rvert\, \rightarrow \mathrm{z}=\frac{1}{3} \rightarrow \frac{1}{3(z-1)}, \quad \mathrm{B}=-1 / 2
$$

Therefore,

$$
\begin{aligned}
& \frac{X(z)}{z}=\frac{1 / 2}{z-1}+\frac{-1 / 2}{z-\frac{1}{3}}, \quad X(z)=\frac{\frac{1}{2} z}{z-1}+\frac{\left(-\frac{1}{2}\right) z}{z-\frac{1}{3}} \\
\therefore \quad & x(n)=1 / 2 u(n)-1 / 2\left(\frac{1}{3}\right)^{n} u(n)
\end{aligned}
$$

3. USING POWER SERIES EXPANSION (LONG DIVISION METHOD)

Example:-

Find the inverse z-transform sequence of the following signal:

$$
X(z)=\frac{z^{2}+z}{z^{2}-3 z+4}
$$

Sol:-
Represent the z-transform function $\mathrm{X}(\mathrm{z})$ in terms of z^{-1} by dividing z^{2} for both numerator and denominator.
$X(z)=\frac{z^{2}+z}{z^{2}-3 z+4}=\frac{1+z^{-1}}{1-3 z^{-1}+4 z^{-2}}$

By examination, the sequence $x(n)$ is;
$X(0)=1, x(1)=4, x(2)=8, x(3)=8, \ldots \ldots$

$$
\begin{aligned}
&\left.1-3 z^{-1}+4 z^{-2}\right) \frac{1+4 z^{-1}+8 z^{-2}+8 z^{-3}}{1+z^{-1}} \\
& \frac{1-3 z^{-1}+4 z^{-2}}{4 z^{-1}-4 z^{-2}} \\
& \frac{4 z^{-1}-12 z^{-2}+16 z^{-3}}{8 z^{-2}-16 z^{-3}} \\
& \frac{8 z^{-2}-24 z^{-3}+32 z^{-4}}{8 z^{-3}-32 z^{-4}}
\end{aligned}
$$

The long division procedure used in the example above can be carried out to any desired number of steps.

4. USING COMPLEX INVERSION INTEGRAL

The integral is a contour integral over a closed path C that must - enclose the origin,

- lie in the ROC of $\mathrm{X}(\mathrm{z})$.

$$
x[n]=\frac{1}{2 \pi j} \oint X(z) z^{n-1} \mathrm{~d} z
$$

Practical problems requiring inverse z-transform:

- Given a system function $\mathrm{H}(\mathrm{z})$, e.g., described by a pole-zero plot, find $\mathrm{h}[\mathrm{n}]$.

This is particularly important since we will design filters in the z-domain.

- When performing convolution via z-transforms: $Y(z)=H(z) X(z)$, leading to $y[n]$.

Poles and Zeros

- When $X(z)$ is represented as a numerator and denominator of polynomial $(\mathrm{N}(\mathrm{z}) / \mathrm{D}(\mathrm{z}))$.

$$
X(z)=\frac{N(z)}{D(z)}=\frac{b_{0} z^{0}+b_{1} z^{-1}+\ldots+b_{M} z^{-M}}{a_{0} z^{0}+a_{1} z^{-1}+\ldots+a_{N} z^{-N}}=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{\sum_{k=0}^{N} a_{k} z^{-k}}
$$

Zero (z) is the value of z where $X(z)=0$; Pole (p) is the value of z at $X(z)=\infty$.

$$
X(z)=\frac{b_{0}}{a_{0}} z^{-M+N} \frac{\left(z-z_{1}\right)\left(z-z_{2}\right) \ldots\left(z-z_{M}\right)}{\left(z-p_{1}\right)\left(z-p_{2}\right) \ldots\left(z-p_{N}\right)}
$$

Zero of $\mathrm{X}(\mathrm{z})$ at $\mathrm{z}=\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots, \mathrm{z}_{\mathrm{M}}$; Pole at $\mathrm{z}=\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{N}}$.
Pole-zero is plotted on z-plane with notation (X) as pole and (0) as zero.

Example:-

Determine the pole-zero of signal:
$x(n)=a^{n} u(n) ; \quad a>0$

Sol:-

Transform $\mathrm{x}(\mathrm{n})$ into z -equation:

$$
\begin{aligned}
& x(z)=\frac{1}{1-a z^{-1}}=\frac{z}{z-a} ; \quad \text { ROC: }|z|>a \\
& x(z) \text { has one zero } z_{1}=0 \text { and one pole at } p_{1}=a .
\end{aligned}
$$

Pole-Zero Cancellation

If a pole is at the same location as a zero, the characteristics of poles can be cancelled by zero.

Example: Determine the convolution of the two sequences with Z-transform $x(n)=\{2,1,0,0.5\}$ and $h(n)=\{2,2,1,1\}$

Sol:

Tacking Z-transform of the two sequences

$$
\begin{aligned}
& \mathrm{X}(\mathrm{z})=2+Z^{-1}+0.5 Z^{-3} \\
& \mathrm{H}(\mathrm{z})
\end{aligned}=2+2 Z^{-1}+Z^{-2}+Z^{-3}, \begin{aligned}
\mathrm{Y}(\mathrm{z}) & =\mathrm{X}(\mathrm{z}) \mathrm{H}(\mathrm{z}) \\
& =\left(2+Z^{-1}+0.5 Z^{-3}\right)\left(2+2 Z^{-1}+Z^{-2}+Z^{-3}\right) \\
& =4+6 Z^{-1}+4 Z^{-2}+4 Z^{-3}+2 Z^{-4}+0.5 Z^{-5}+0.5 Z^{-6}
\end{aligned}
$$

By tacking inverse Z-transform, we get
$\mathrm{y}(\mathrm{n})=4 \delta(n)+6 \delta(n-1)+4 \delta(n-2)+4 \delta(n-3)+2 \delta(n-4)+0.5 \delta(n-5)+0.5 \delta(n-6)$
Then $\mathrm{y}(\mathrm{n})=\{4,6,4,4,2,0.5,0.5\}$

Example: Find the transfer function with Z-transform for the system in fig.

Sol:

$$
y(n)=x(n)+b y(n-1)
$$

where, b is a multiplicative constant (gain). Taking the ZT of both sides

$$
\begin{aligned}
& Y(z)=X(z)+b z^{-1} Y(z) \\
& {\left[1-b z^{-1}\right] Y(z)=X(z)} \\
& \therefore H(z)=\frac{Y(z)}{X(z)}=\frac{1}{1-b z^{-1}}=\frac{z}{z-b}
\end{aligned}
$$

From Tables (z-Transform Pairs), the IZT is

$$
h(n)=b^{n} u(n)
$$

