PROBABILITY, SIGNALS \& SVSTEMS

bY: RUAA Shallal anooz

THE HYPERGEOMETRIC DISTRIBUTION

- In the binomial situation, each trial was independent.
- Drawing cards from a deck and replacing the drawn card each time
- If the card is not replaced, each trial depends on the previous trial(s).
- The hypergeometric distribution can be used in this case.

THE HYPERGEOMETRIC DISTRIBUTION

- Randomly draw n elements from a set of N elements, without replacement. Assume there are r successes and N-r failures in the N elements.
- The hypergeometric random variable is the number of successes, x, drawn from the r available in the n selections.

THE HYPERGEOMETRIC DISTRIBUTION

$$
P(x)=\frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}}
$$

where
$N=$ the total number of elements
$r=$ number of successes in the N elements
$n=$ number of elements drawn
$X=$ the number of successes in the n elements

THE HYPERGEOMETRIC DISTRIBUTION

$$
P(x)=\frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}}
$$

$$
\begin{aligned}
\mu & =\frac{n r}{N} \\
\sigma^{2} & =\frac{r(N-r) n(N-n)}{N^{2}(N-1)}
\end{aligned}
$$

THE HYPERGEOMETRIC DISTRIBUTION

- Suppose a customer at a pet store wants to buy two hamsters for his daughter, but he wants two males or two females (i.e., he wants only two hamsters in a few months)
- If there are ten hamsters, five male and five female, what is the probability of drawing two of the same sex? (With hamsters, it's virtually a random selection.)

$$
\begin{aligned}
& P(M=2)=P(F=2)=\frac{\binom{5}{2}\binom{10-5}{2-2}}{\binom{10}{2}}=\frac{(10)(1)}{45}=.22 \\
& P(M=2 \text { or } F=2)=P(M=2)+P(F=2)=2 \times .22=.44
\end{aligned}
$$

IIPPORTANT CONTINUOUS DISTRIBUTIONS

\square Normal Distribution
Undoubtedly, the most widely used model for the distribution of a random variable is a normal distribution.

- Central limit theorem
- Gaussian distribution

NORMAL DISTRIBUTION

Figure 3-11 Normal probability density functions for selected values of the parameters μ and σ^{2}.

NORMAL DISTRIBUTION

A random variable X with probability density function

$$
\begin{equation*}
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}} \text { for }-\infty<x<\infty \tag{3-4}
\end{equation*}
$$

has a normal distribution (and is called a normal random variable) with parameters μ and σ, where $-\infty<\mu<\infty$, and $\sigma>0$. Also,

$$
E(X)=\mu \quad \text { and } \quad V(X)=\sigma^{2}
$$

The mean and variance of the normal distribution are derived at the end of this section.

NORMAL DISTRIBUTION

Assume that the current measurements in a strip of wire follow a normal distribution with a mean of 10 milliamperes and a variance of 4 milliamperes 2. What is the probability that a measurement exceeds 13 milliamperes?

Solution. Let X denote the current in milliamperes. The requested probability can be represented as $P(X$ >13). This probability is shown as the shaded area under the normal probability density function in Fig. 3-12. Unfortunately, there is no closed-form expression for the integral of a normal pdf, and probabilities based on the normal distribution are typically found numerically or from a table (which we will introduce later).

Figure 3-12 Probability that $X>13$ for a normal
random variable with $\mu=10$ and $\sigma^{2}=4$ in Example 3-6.

NORMAL DISTRIBUTION

$f(x)$

Figure 3-13 Probabilities associated with a normal distribution.

NORMAL DISTRIBUTION

A normal random variable with $\mu=0$ and $\sigma^{2}=1$ is called a standard normal random variable. A standard normal random variable is denoted as Z.

The function

$$
\Phi(z)=P(Z \leq z)
$$

is used to denote a probability from Appendix A Table I. It is the cumulative distribution function of a standard normal random variable. A table (or computer software) is required because the probability can't be determined by elementary methods.

NORMAL DISTRIBUTION

If X is a normal random variable with $E(X)=\mu$ and $V(X)=\sigma^{2}$, the random variable

$$
Z=\frac{X-\mu}{\sigma}
$$

is a normal random variable with $E(Z)=0$ and $V(Z)=1$. That is, Z is a standard normal random variable.

NORMAL DISTRIBUTION

Suppose X is a normal random variable with mean μ and variance σ^{2}. Then,

$$
\begin{equation*}
P(X \leq x)=P\left(\frac{X-\mu}{\sigma} \leq \frac{x-\mu}{\sigma}\right)=P(Z \leq z) \tag{3-5}
\end{equation*}
$$

where
Z is a standard normal random variable, and
$z=(x-\mu) / \sigma$ is the z-value obtained by standardizing x.
The probability is obtained by entering Appendix A Table I with $z=(x-\mu) / \sigma$.

NORMAL DISTRIBUTION

Figure 3-14 Standard normal probability density function.

STANDARD NORMAL TABLES

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.

-3.9	. 00005	. 00005	. 00004	. 00004	. 00004	. 00004	. 00004	. 00004	. 00003	. 00003
-3.8	. 00007	. 00007	. 00007	. 00006	. 00006	. 00006	. 00006	. 00005	. 00005	. 00005
-3.7	. 00011	. 00010	. 00010	. 00010	. 00009	. 00009	. 00008	. 00008	. 0000	. 00008
-3.6	. 00016	. 00015	. 00015	. 00014	. 00014	. 00013	. 00013	. 00012	. 0001	. 00011
-3.5	. 00023	. 00022	. 00022	. 00021	. 00020	. 00019	. 00019	. 00018	. 00017	. 00017
-3.4	0034	00032	. 00031	. 00030	. 00029	. 00028	. 0002	. 0002	. 0002	. 00024
-3.3	. 000	. 00047	. 00045	. 00043	. 00042	. 00040	. 00039	. 0003	. 0003	. 0003
-3.2	. 00069	. 00066	. 00064	. 00062	. 00060	. 00058	. 00056	. 0005	. 0005	. 00050
-3.1	. 00097	. 00094	. 00090	. 00087	. 00084	. 00082	. 00079	. 00076	. 0007	. 00071
-3.0	. 00135	. 00131	. 00126	. 00122	. 00118	. 00114	. 00111	. 00107	. 00104	. 00100
-2.9	. 00187	. 00181	. 00175	. 00169	. 00164	. 00159	. 00154	. 00149	. 00144	. 00139
-2.8	. 00256	. 00248	. 00240	. 00233	. 00226	. 00219	. 00212	. 00205	. 00199	. 00193
-2.7	. 00347	. 00336	. 00326	. 00317	. 00307	. 00298	. 00289	. 00280	. 00272	. 00264
-2.6	. 00466	. 00453	. 00440	. 00427	. 00415	. 00402	. 00391	. 00379	. 00368	. 00357
-2.5	. 00621	. 00604	. 00587	. 00570	. 00554	. 00539	. 00523	. 00508	. 00494	. 00480
-2.4	. 0082	. 007	. 007	. 00755	. 00734	. 00714	. 00695	. 00676	. 00657	. 00639
-2.3	. 010	. 010	. 01017	. 00990	. 00964	. 00939	. 00914	. 00889	. 00866	. 00842
-2.2	. 0139	. 01355	. 01321	. 01287	. 01255	. 01222	. 01191	. 01160	. 01130	. 01101
-2.1	. 01786	. 01743	. 01700	. 01659	. 01618	. 01578	. 01539	. 01500	. 01463	. 01426
-2.0	. 02275	. 02222	. 02169	. 02118	. 02068	. 02018	. 01970	. 01923	. 01876	. 01831
-1.9	. 02872	. 02807	. 02743	. 02680	. 02619	. 02559	. 02500	. 02442	. 02385	. 02330
-1.8	. 03593	. 03515	. 03438	. 03362	. 03288	. 03216	. 03144	. 03074	. 03005	. 02938
-1.7	. 0445	. 04363	. 04272	. 04182	. 04093	. 04006	. 03920	. 03836	. 03754	. 03673
-1.6	. 05480	. 05370	. 05262	. 05155	. 05050	. 04947	. 04846	. 04746	. 04648	. 04551
-1.5	. 06681	. 06552	. 06426	. 06301	. 06178	. 06057	. 05938	. 05821	. 05705	. 05592
-1.4	. 08076	. 07927	. 07780	. 07636	. 07493	. 07353	. 07215	. 07078	. 06944	. 06811
-1.3	. 09680	. 09510	. 09342	. 09176	. 09012	. 08851	. 08691	. 08534	. 08379	. 08226
-1.2	. 11507	. 11314	. 11123	. 10935	. 10749	. 10565	. 10383	. 10204	. 10027	. 09853
-1.1	. 13567	. 13350	. 13136	. 12924	. 12714	. 12507	. 12302	. 12100	. 11900	. 11702
-1.0	. 15866	. 15625	. 15386	. 15151	. 14917	. 14686	14457	. 14231	. 14007	. 13786
-0.9	. 18406	. 18141	. 17879	. 17619	. 17361	. 17106	. 16853	. 16602	. 16354	. 16109
-0.8	. 21186	. 20897	. 20611	. 20327	. 20045	. 19766	. 19489	. 19215	. 18943	. 18673
-0.7	. 24196	. 23885	. 23576	. 23270	. 22965	22663	. 22363	. 22065	. 21770	. 21476
-0.6	. 27425	. 27093	. 26763	. 26435	26109	25785	. 25463	. 25143	24825	. 24510
-0.5	30854	30503	. 30153	29806	29460	29116	28774	28434	28096	27760
-0.4	34458	. 34090	. 33724	. 33360	. 32997	32636	. 32276	. 31918	31561	31207
-0.3	. 38209	. 37828	. 37448	. 37070	. 36693	. 36317	. 35942	. 35569	35197	. 34827
-0.2	. 42074	. 41683	. 41294	. 40905	. 40517	. 40129	. 39743	. 39358	38974	. 38591
-0.1	. 46017	. 45620	. 45224	. 44828	. 44433	. 44038	43644	. 43251	42858	. 42465
	. 50000	9601	49202	. 48803	48405	48006	47608	47210	. 46812	. 46414

z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
0.0	. 50000	. 50399	. 50798	. 51197	51595	. 51994	. 52392	. 52790	53188	. 53586
0.1	53983	. 54380	. 54776	. 55172	. 55567	. 55962	. 56356	. 56749	. 57142	. 57535
0.2	. 57926	. 58317	. 58706	. 59095	. 59483	. 59871	. 60257	. 60642	. 61026	. 61409
0.3	. 61791	. 62172	. 62552	. 62930	. 63307	. 63683	. 64058	. 64431	. 64803	. 65173
0.4	. 65542	. 65910	. 66276	. 66640	. 67003	. 67364	. 67724	. 68082	. 68439	. 68793
0.5	. 69146	. 69497	. 69847	. 70194	. 70540	. 70884	. 71226	. 71566	. 71904	. 72240
0.6	. 72575	. 72907	. 73237	. 73565	. 73891	. 74215	. 74537	. 74857	. 75175	. 75490
0.7	. 75804	. 76115	. 76424	. 76730	. 77035	. 77337	. 77637	. 77935	. 78230	. 78524
0.8	. 78814	. 79103	. 79389	. 79673	. 79955	. 80234	. 80511	. 80785	. 81057	. 81327
0.9	. 81594	. 81859	. 82121	. 82381	. 82639	. 82894	. 83147	. 83398	. 83646	. 83891
1.0	. 84134	. 84375	. 84614	. 84849	. 85083	. 85314	. 85543	85769	85993	. 86214
1.1	. 86433	. 86650	. 86864	. 87076	. 87286	. 87493	. 87698	. 87900	. 88100	. 88298
1.2	. 88493	. 88686	. 88877	. 89065	. 89251	. 89435	. 89617	. 89796	. 89973	. 90147
1.3	. 90320	. 90490	. 90658	. 90824	. 90988	91149	. 91309	91466	91621	91774
1.4	. 91924	. 92073	. 92220	. 92364	. 92507	. 92647	. 92785	92922	93056	. 93189
1.5	. 93319	. 93448	. 93574	. 93699	. 93822	. 93943	. 94062	. 94179	94295	. 94408
1.6	. 94520	. 94630	. 94738	. 94845	. 94950	. 95053	. 95154	95254	. 95352	. 95449
1.7	. 95543	. 95637	. 95728	. 95818	. 95907	. 95994	. 96080	. 96164	. 96246	. 96327
1.8	. 96407	. 96485	. 96562	. 96638	. 96712	. 96784	. 96856	. 96926	. 96995	. 97062
1.9	97128	. 97193	. 97257	. 97320	. 97381	.97441	. 97500	97558	97615	. 97670
2.0	. 97725	. 97778	. 97831	. 97882	. 97932	. 97982	. 98030	98077	. 98124	. 98169
2.1	. 98214	. 98257	. 98300	. 98341	. 98382	. 98422	. 98461	. 98500	. 98537	. 98574
2.2	98610	. 98645	. 98679	. 98713	. 98745	. 98778	. 98809	98840	98870	. 98899
2.3	. 98928	. 98956	. 98983	. 99010	. 99036	. 99061	99086	99111	99134	99158
2.4	. 99180	. 99202	. 99224	. 99245	. 99266	. 99286	. 99305	. 99324	. 99343	. 99361
2.5	. 99379	. 99396	. 99413	. 99430	. 99446	. 99461	. 99477	. 99492	99506	. 99520
2.6	. 99534	. 99547	. 99560	. 99573	. 99585	. 99598	. 99609	. 99621	. 99632	. 99643
2.7	. 99653	. 99664	. 99674	. 99683	. 99693	. 99702	. 99711	99720	. 99728	. 99736
2.8	99744	. 99752	. 99760	. 99767	. 99774	. 99781	. 99788	99795	. 99801	. 99807
2.9	. 99813	. 99819	. 99825	. 99831	. 99836	. 9984	. 99846	.9985t	. 99856	. 99861
3.0	. 99865	. 9986	. 99874	. 99878	. 99882	. 99886	. 99889	. 99893	99896	. 99900
3.1	. 99903	. 99906	. 99910	. 99913	99916	. 99918	. 99921	. 99924	. 99926	. 99929
3.2	. 99931	. 99934	. 99936	. 99938	. 99940	. 99942	. 99944	. 99946	. 99948	. 99950
3.3	. 99952	. 99953	. 99955	. 99957	. 99958	. 99960	. 99961	. 99962	. 99964	. 99965
3.4	. 99966	. 99968	. 99969	. 99970	. 99971	. 99972	. 99973	. 99974	. 99975	. 99976
3.5	. 99977	. 99978	. 99978	. 99979	99980	. 99981	. 99981	99982	99983	. 99983
3.6	. 99984	. 99985	. 99985	. 99986	99986	. 99987	. 99987	. 99988	. 99988	. 99989
3.7	. 99989	. 99990	. 99990	. 99990	99991	. 99991	. 99992	. 99992	. 99992	. 99992
3.8	. 99993	. 99993	. 99993	. 99994	. 99994	. 99994	. 99994	9999	99995	. 99995
3.9	. 99995	. 99995	. 9999	. 9999	. 99996	. 9999	. 9999	. 9999	. 99997	. 99997

NORMAL DISTRIBUTION

Example:

The diameter of a shaft in an optical storage drive is normally distributed with mean 0.2508 inch and standard deviation 0.0005 inch. The specifications on the shaft are 0.2500 ± 0.0015 inch. What proportion of shafts conforms to specifications?

Solution. Let X denote the shaft diameter in inches. The requested probability is shown in Fig. 3-19 and

$$
\begin{aligned}
P(0.2485<X<0.2515) & =P\left(\frac{0.2485-0.2508}{0.0005}<Z<\frac{0.2515-0.2508}{0.0005}\right) \\
& =P(-4.6<Z<1.4)=P(Z<1.4)-P(Z<-4.6) \\
& =0.91924-0.0000=0.91924
\end{aligned}
$$

NORMAL DISTRIBUTION

Most of the nonconforming shafts are too large, because the process mean is located very near to the upper specification limit. If the process is centered so that the process mean is equal to the target value of 0.2500 ,

$$
\begin{aligned}
P(0.2485<X<0.2515) & =P\left(\frac{0.2485-0.2500}{0.0005}<Z<\frac{0.2515-0.2500}{0.0005}\right) \\
& =P(-3<Z<3)=P(Z<3)-P(Z<-3) \\
& =0.99865-0.00135=0.9973
\end{aligned}
$$

By recentering the process, the yield is increased to approximately 99.73%.

Figure 3-19 Distribution for Example 3-12.

UNIFORM DISTRIBUTION

The uniform distribution: all values are equally likely. The uniform distribution:

$$
f(x)=1, \text { for } 1 \geq x \geq 0
$$

We can see it's a probability distribution because it integrates to 1 (the area under the curve is 1):

$$
\int_{0}^{1} 1=\left.x \quad\right|_{0} ^{1}=1-0=1
$$

UNIFORM DISTRIBUTION

What's the probability that x is between $1 / 4$ and $1 / 2$?

$$
\mathbf{P}(1 / 2 \geq x \geq 1 / 4)=1 / 4
$$

