AL FURAT AL AWSAT TECHNICAL UNIVERSITY NAJAF COLLEGE OF TECHNOLOGY DEPARTMENT OF AVIONICS ENGINEERING

DIGITAL SIGNAL PROCESSING 3rd YEAR

BY

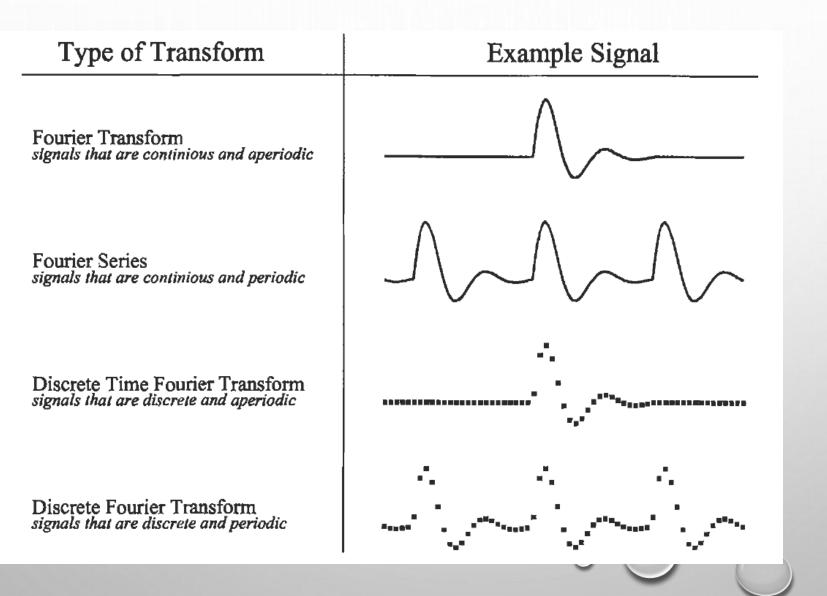
RUAA SHALLAL ANOOZ

FOURIER SERIES VERSUS FOURIER TRANSFORME

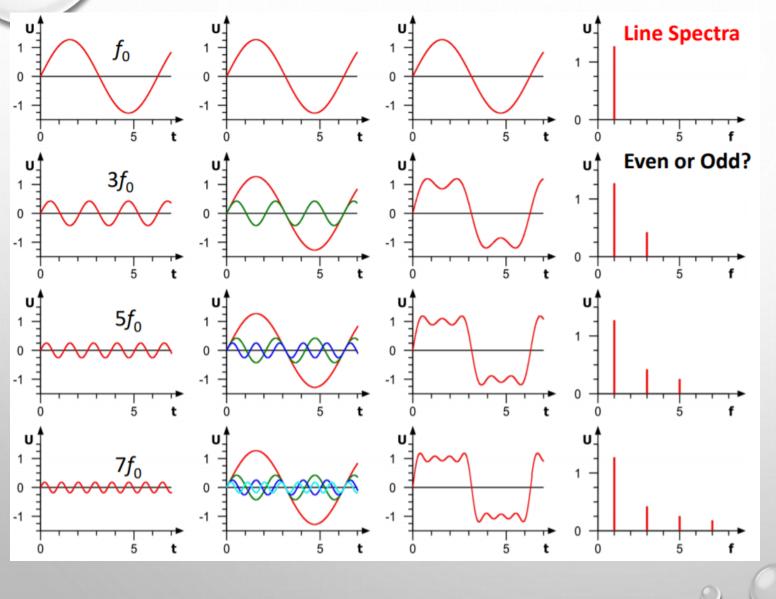
	Continuous time	Discrete time
Periodic	Fourier Series	Discrete Fourier Transform
Aperiodic	Fourier Transform	Discrete Fourier Transform

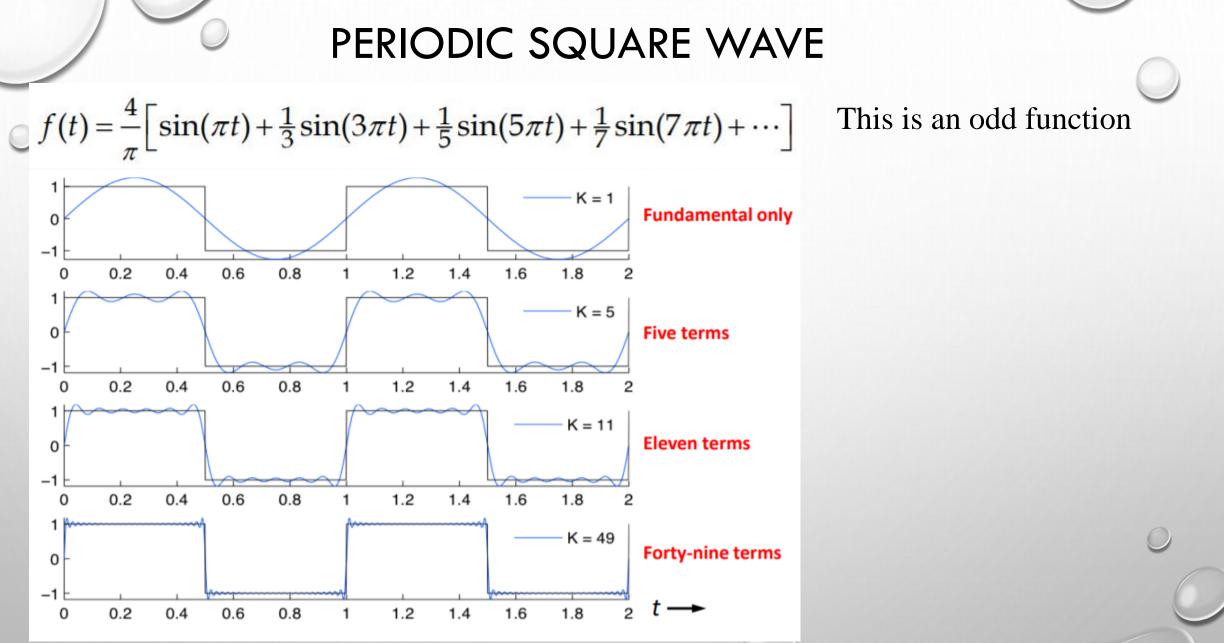
- Fourier series for continuoustime periodic signals → discrete spectra
- Fourier transform for continuous aperiodic signals → continuous spectra

FOURIER SERIES VERSUS FOURIER TRANSFORME

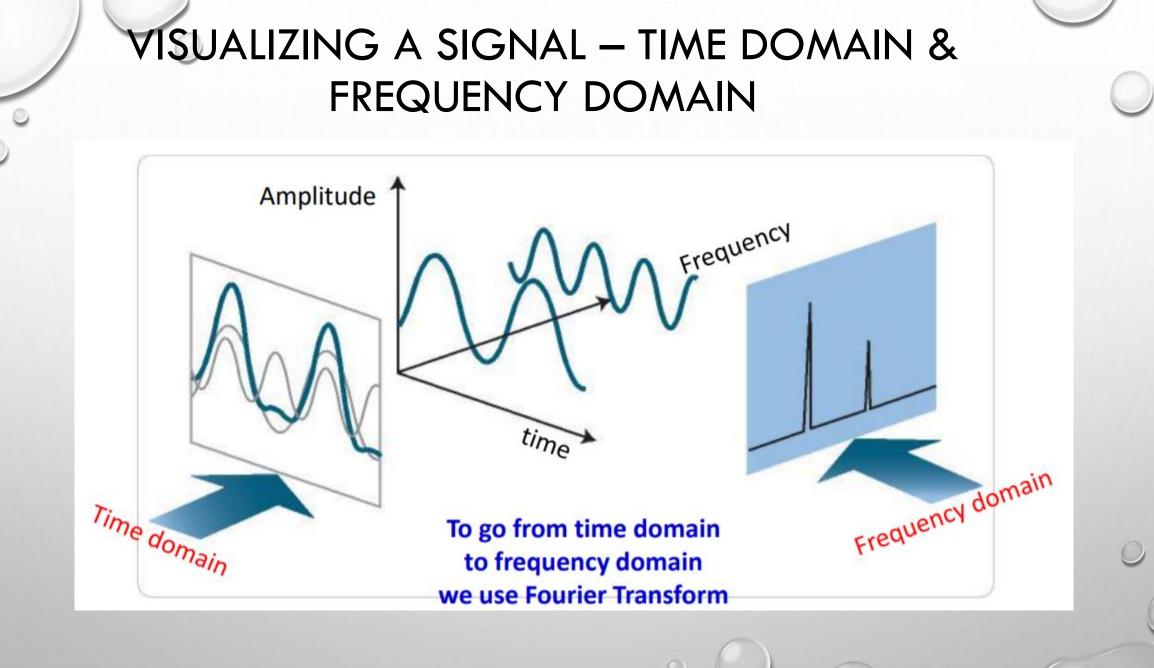


PERIODIC SQUARE WAVE IS SUM OF SINUSOIDS





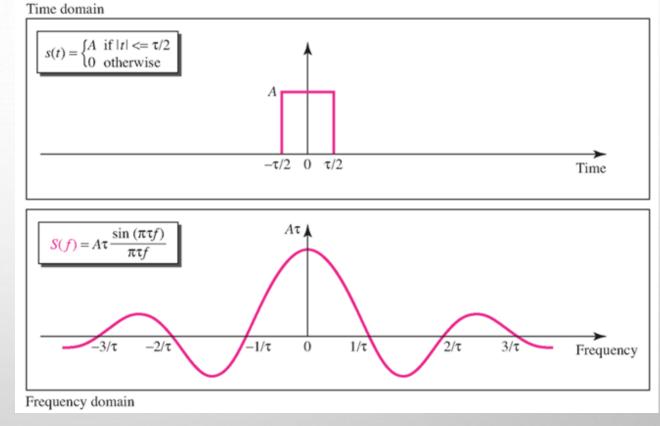
Ruaa Shallal Abbas

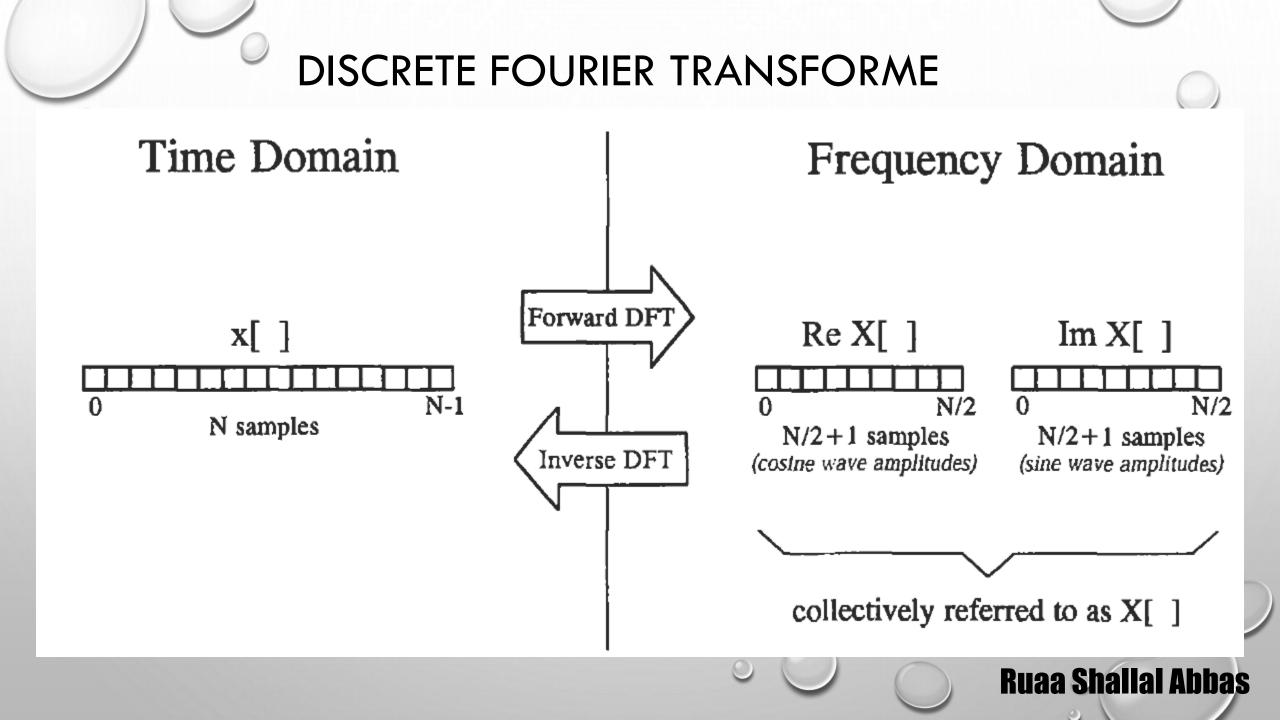


NON PERIODIC SIGNALS AND FOURIER TRANSFORM

Generation Fourier Transform

 Fourier Transform gives the frequency domain of a nonperiodic time domain signal.





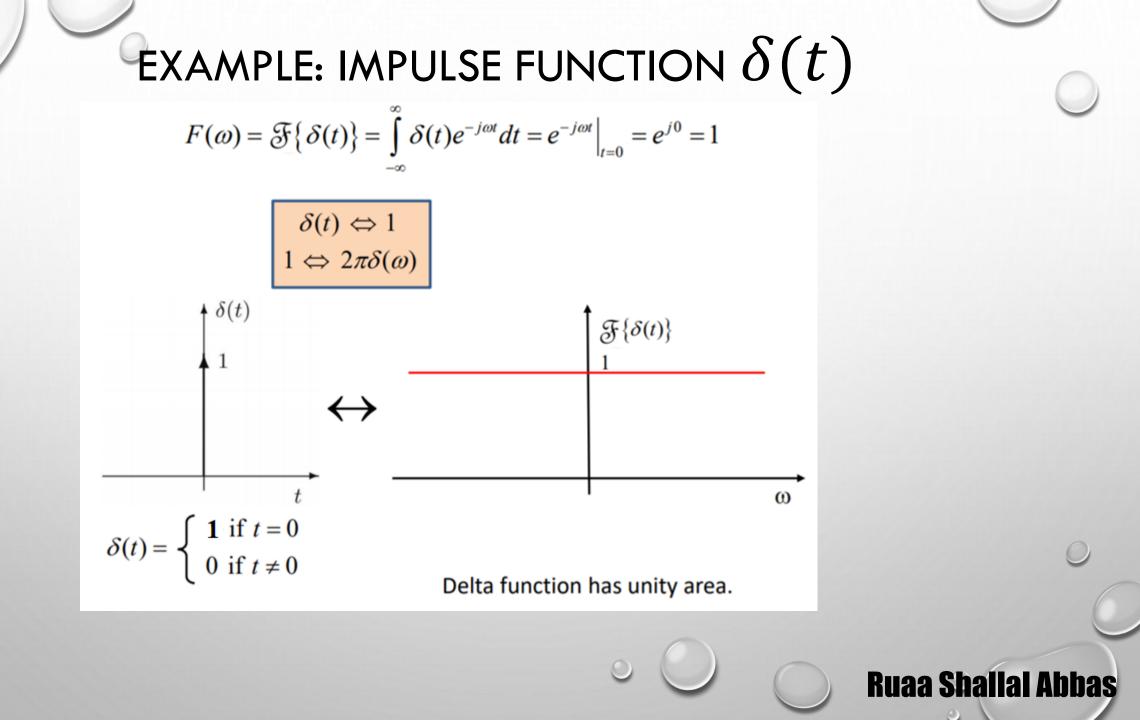
DEFINITION OF FOURIER TRANSFORM

The Fourier transform (spectrum) of f(t) is F(w):

$$F(\omega) = \mathscr{F}\left\{f(t)\right\} = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$$
$$f(t) = \mathscr{F}^{-1}\left\{F(\omega)\right\} = \frac{1}{2\pi}\int_{-\infty}^{\infty} F(\omega)e^{j\omega t}d\omega$$

Ruaa Shallal Abbas

ONote: Remember $\omega = 2\pi f$



EXAMPLE: FOURIER TRANSFORM OF SINGLE RECTANGULAR PULSE

$$f(t) = \operatorname{rect}(t) = \operatorname{II}(t/\tau) = \begin{cases} 1 & \text{for } -\frac{\tau}{2} \le t \le \frac{\tau}{2} \\ 0 & \text{for all } |t| > \frac{\tau}{2} \end{cases}$$

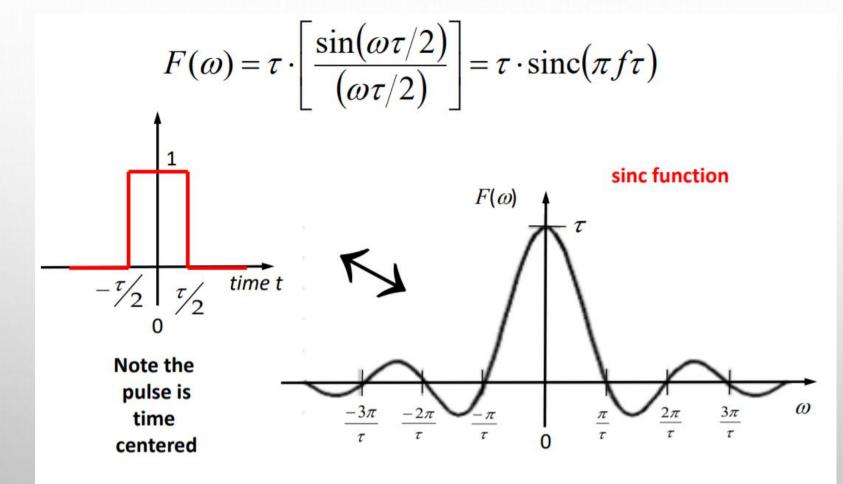
$$f(t) = \operatorname{rect}(t) = \operatorname{II}(t/\tau)$$

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt = \int_{-\tau/2}^{\tau/2} e^{-j\omega t} dt$$

$$= \left(\frac{e^{-j\omega t}}{-j\omega}\right)\Big|_{-\tau/2}^{\tau/2} = \frac{e^{-j\omega \tau/2} - e^{j\omega \tau/2}}{-j\omega}$$

$$= \frac{-2\sin(\omega \tau/2)}{-\omega} = \tau \cdot \left[\frac{\sin(\omega \tau/2)}{(\omega \tau/2)}\right]$$
Remember $\omega = 2\pi f$

EXAMPLE: FOURIER TRANSFORM OF SINGLE RECTANGULAR PULSE



Ruaa Shallal Abbas

0

PROPERTIES OF THE SINC FUNCTION

Definitions of the sinc function:

$$\operatorname{sinc}(x) = \frac{\sin(x)}{x}$$
 and $\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$

Sinc Properties:

- 1. sinc(x) is an even function of x.
- 2. sinc(x) = 0 at points where sin(x) = 0, that is, sinc(x) = 0 when $x = \pm \pi, \pm 2\pi, \pm 3\pi, \dots$.
- 3. Using L'Hôpital's rule, it can be shown that sinc(0) = 1.
- sinc(x) oscillates as sin(x) oscillates and monotonically decreases as 1/ x decreases as | x | increases.
- 5. sinc(x) is the Fourier transform of a single rectangular pulse.