Surveying Engineering

Lecturer: Dr. Israa Rahman Ghanim

Technical College of Engineering, Najaf - middle Euphrates, Technical University
Building and Construction Engineering Department

Subtraction of angles

1	$48^{\circ} 15^{\prime} 38^{\prime \prime}$ $-15^{\circ} 09^{\prime} 21^{\prime \prime}$

3 | $48^{\circ} 15^{\prime} 38^{\prime \prime}$ |
| ---: |
| $\frac{-15^{\circ} 09^{\prime} 21^{\prime \prime}}{} 06^{\prime} 17^{\prime \prime}$ |

4 | $48^{\circ} 15^{\prime} 38^{\prime \prime}$ |
| ---: |
| $\frac{-15^{\circ} 09^{\prime} 21^{\prime \prime}}{33^{\circ} 06^{\prime} 17^{\prime \prime}}$ |

Subtraction of angles

Vertical Angle (V)

- The vertical angle is the angle between the horizon line and the direction of the guiding line. The theodolite device does not measure the vertical angle directly, but rather reads a certain reading on the vertical circle and it is called the reading of the vertical circle(α) and through this reading the value of the vertical angle can be obtained according to the monitoring position of the device (F.L or F.R), as follows:

1- F.L Mode

$$
V=90-\alpha \quad \text { The two case at F.L }
$$

2-F.R Mode

- Example1: the vertical circle readings from the station A at the points B, C, D respectively as shown in table below :

Theodolite station	Observed point	Horizontal circle readings	
		F.L	F.R
A	B	$85^{\circ} 14^{\prime} 10^{\prime \prime}$	$274^{\circ} 45^{\prime} 10^{\prime \prime}$
	C	$93^{\circ} 27^{\prime} 14^{\prime \prime}$	$266^{\circ} 32^{\prime} 36^{\prime \prime}$
	D	$97^{\circ} 18^{\prime} 50^{\prime \prime}$	$262^{\circ} 41^{\prime} 18^{\prime \prime}$

If the theodolite height at station $A=1.5 \mathrm{~m}$, and the elevation of point A was 30 m . Find the elevation of points B, C and D if you know that the horizontal distance to these points (B, C and D)were equal to (50,100 and 150) m respectively ?

SOLUTION :
Line $A B$:

$$
\begin{aligned}
& \text { V at } F . L=90-\alpha=90-85^{\circ} 14^{\prime} 10^{\prime \prime}=4^{\circ} 45^{\prime} 50^{\prime \prime} \\
& \text { V at } F . \mathrm{R}=\alpha-270=274^{\circ} 45^{\prime} 10^{\prime \prime}-270=4^{\circ} 45^{\prime} 10^{\prime \prime} \\
& V_{\text {final }}=\frac{V \text { at } F . L+V \text { at } F . R}{2}=\frac{4^{\circ} 45^{\prime} 50^{\prime \prime}+4^{\circ} 45^{\prime} 10^{\prime \prime}}{2}=+4^{\circ} 45^{\prime} 30^{\prime \prime} \text { زاوية الارنفاع }
\end{aligned}
$$

Elev. $\mathrm{B}=$ Elev. $\mathrm{A}+\mathrm{H} . \mathrm{I}+\mathrm{H}$
But $\mathrm{H}=50 \tan \mathrm{~V}$

$$
\begin{aligned}
& =50 \tan 4^{\circ} 45^{\prime} 30^{\prime \prime} \\
& =4.162 \mathrm{~m}
\end{aligned}
$$

Elev. $\mathrm{B}=30+1.5+4.162$

$$
=35.622 \mathrm{~m}
$$

50 m

Line CA:

V at $\mathrm{F} . \mathrm{L}=90-\alpha=90-93^{\circ} 27^{\prime} 14^{\prime \prime}=-3^{\circ} 27^{\prime} 14^{\prime \prime}$
V at $\mathrm{F} . \mathrm{R}=\alpha-270=266^{\circ} 32^{\prime} 36^{\prime \prime}-270=-3^{\circ} 27^{\prime} 24^{\prime \prime}$
$V_{\text {final }}=\frac{V a t F . L+V a t F . R}{2}=\frac{-3^{\circ} 27^{\prime} 14^{\prime \prime}+\left(-3^{\circ} 27^{\prime} 24^{\prime \prime}\right)}{2}=-3^{\circ} 27^{\prime} 19^{\prime \prime} \quad$ زيـة الانخفاض
Elev. $\mathrm{C}=$ Elev. A $+\mathrm{H} . \mathrm{I}-\mathrm{H}$
But $\mathrm{H}=100 \tan \mathrm{~V}=100 \tan -3^{\circ} 27^{\prime} 19^{\prime \prime}=-6.038 \mathrm{~m}$
Elev. $\mathrm{C}=30+1.5-6.038=25.462 \mathrm{~m}$

Line DA:
V at F.L $=90-\alpha=90-97^{\circ} 18^{\prime} 50^{\prime \prime}=-7^{\circ} 18^{\prime} 50^{\prime \prime}$
V at F.R $=\alpha-270=262^{\circ} 41^{\prime} 18^{\prime \prime}-270=-7^{\circ} 18^{\prime} 42^{\prime \prime}$

$$
V_{\text {final }}=\frac{V \text { at } F . L+V \text { at } F . R}{2}=\frac{-7^{\circ} 18^{\prime} 50^{\prime \prime}+\left(-7^{\circ} 18^{\prime} 42^{\prime \prime}\right)}{2}=-7^{\circ} 18^{\prime} 46^{\prime \prime}{ }^{\prime \prime} \text { الانخفاض }
$$

Elev. $\mathrm{D}=$ Elev. $\mathrm{A}+\mathrm{H} . \mathrm{I}-\mathrm{H}$
But $\mathrm{H}=150 \tan \mathrm{~V}=150 \tan \left(-7^{\circ} 18^{\prime} 46^{\prime \prime}\right)=-19.249 \mathrm{~m}$
Elev. $\mathrm{D}=30+1.5-19.249=12.25 \mathrm{~m}$

- Example2 : the point B was observed from station A by using A theodolite instrument, and the readings was as follow :

Theodolite station	Observed point	Horizontal circle readings	
		F.L	F.R
A	B	$81^{\circ} 20^{\prime} 10^{\prime \prime}$	$278^{\circ} 40^{\prime} 20^{\prime \prime}$

If point A elevation was 40 m , the theodolite height over this point (HI) was 1.5 m , and the horizontal distance of line $A B$ was 100 m , find the elevation of point B ?. SOLUTION:

$$
\begin{aligned}
& V \text { at } F . \mathrm{L}=90-\alpha=90-81^{\circ} 20^{\prime} 10^{\prime \prime}=8^{\circ} 39^{\prime} 50^{\prime \prime} \\
& V \text { at } \mathrm{F} . \mathrm{R}=\alpha-270=278^{\circ} 40^{\prime} 20^{\prime \prime}-270=8^{\circ} 40^{\prime} 20^{\prime \prime} \\
& V_{\text {final }}=\frac{V \text { at } F . L+V \text { at } F . R}{2}=\frac{8^{\circ} 39^{\prime} 50^{\prime \prime}+8^{\circ} 40^{\prime} 20^{\prime \prime}}{2}=8^{\circ} 40^{\prime} 05^{\prime \prime}
\end{aligned}
$$

Elev. B = Elev. A + H.I + H
But $\mathrm{H}=100 \tan \mathrm{~V}=100 \tan \left(8^{\circ} 40^{\prime} 05^{\prime \prime}\right)=15.245 \mathrm{~m}$
Elev. $\mathrm{B}=40+1.5+15.245=56.745 \mathrm{~m}$

- Example 3 : What is the height of a certain building if it was observed by a theodolite instrument and the readings were as follow:

| $\begin{array}{c}\text { Theodol } \\ \text { ite } \\ \text { position }\end{array}$ | Observed point | Horizontal circle readings | | $\begin{array}{c}\text { The horizontal } \\ \text { distance from the }\end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| theodolite station to | | | | |
| the building | | | | |$]$

SOLUTION:

- Line MA which directed to the top of the building :

$$
\begin{aligned}
& V \text { at } \mathrm{F} . \mathrm{L}=90-\alpha=90-54^{\circ} 12^{\prime} 36^{\prime \prime}=35^{\circ} 47^{\prime} 24^{\prime \prime} \\
& \mathrm{V} \text { at } \mathrm{F} . \mathrm{R}=\alpha-270=305^{\circ} 47^{\prime} 30^{\prime \prime}-270=35^{\circ} 47^{\prime} 30^{\prime \prime} \\
& V_{\text {final }}=\frac{V \text { at } F . L+V \text { at } F . R}{2}=\frac{35^{\circ} 47^{\prime} 24^{\prime \prime}+35^{\circ} 47^{\prime} 30^{\prime \prime}}{2}=35^{\circ} 47^{\prime} 27^{\prime \prime}
\end{aligned}
$$

- Line MB which directed to the top of the building :

V at F.L $=90-\alpha=90-93^{\circ} 14^{\prime} 53^{\prime \prime}=-3^{\circ} 14^{\prime} 53^{\prime \prime}$
V at F.R $=\alpha-270=266^{\circ} 45^{\prime} 19^{\prime \prime}-270=-3^{\circ} 14^{\prime} 41^{\prime \prime}$
$V_{\text {frual }}=\frac{V a t F . L+V \text { at } F . R}{2}=\frac{-3^{\circ} 14^{\prime} 53^{\prime \prime}+\left(-3^{\circ} 14^{\prime} 41^{\prime \prime}\right)}{2}=-3^{\circ} 14^{\prime} 47^{\prime \prime}$
(H) $=\mathrm{H}_{1}+\mathrm{H}_{2}$
$\mathrm{H}_{1}=20 \tan \mathrm{~V}_{1}$
$=20 \tan 35^{\circ} 47^{\prime} 27^{\prime \prime}=14.42 \mathrm{~m}$
$\mathrm{H}_{2}=20 \tan \mathrm{~V}_{2}$
$=20 \tan \left(-3^{\circ} 14^{\prime} 47^{\prime \prime}\right)=1.134 \mathrm{~m}$

$$
\mathrm{H}=\mathrm{H}_{1}+\mathrm{H}_{2}=14.42+1.134=15.554 \mathrm{~m}
$$

- Example 4 : if point A was located at the top of building of 15 m height, while point B was located at the bottom of this building. What is the theodolite readings for the vertical circle at the F.R and F.L mode for both point A and B, ($\mathrm{HI}=1.5$).

Solution :

Line MA which directed to the top of the building :
$\mathrm{V}_{1}=\tan ^{-1} \frac{13.5}{20} \Rightarrow \mathrm{~V}_{1}=34^{\circ} 01^{\prime} 10^{\prime \prime}$
V_{1} at F.L $=90-\alpha_{1} \rightarrow 34^{\circ} 01^{\prime} 10^{\prime \prime}=90-\alpha_{1} \rightarrow \alpha_{1}=55^{\circ} 58^{\prime} 50^{\prime \prime}$
V_{1} at $\mathrm{F} . \mathrm{R}=\alpha_{1}-270 \rightarrow 34^{\circ} 01^{\prime} 10^{\prime \prime}=\alpha_{1}-270 \rightarrow \alpha_{1}=309^{\circ} 01^{\prime} 10^{\prime \prime}$
Line $M B$ which directed to the top of the building :
$\mathrm{V}_{2}=\tan ^{-1} \frac{1.5}{20} \Rightarrow \mathrm{~V}_{2}=-4^{\circ} 17^{\prime} 21^{\prime \prime}$
V_{2} at F.L $=90-\alpha_{2} \boldsymbol{\rightarrow}-4^{\circ} 17^{\prime} 21^{\prime \prime}=90-\alpha_{2} \boldsymbol{\rightarrow} \alpha_{2}=94^{\circ} 17^{\prime} 21^{\prime \prime}$
V_{2} at $\mathrm{F} . \mathrm{R}=\alpha_{2}-270 \boldsymbol{\rightarrow}-4^{\circ} 17^{\prime} 21=\alpha_{2}-270 \rightarrow \alpha_{2}=265^{\circ} 42^{\prime} 39$

Example5: If the vertical angle reading for a point located at 3.668 m above point B was equal to ($-2^{\circ} 9^{\prime} 00^{\prime \prime}$). The telescope of theodolite was at 1.52 height above point A, and the horizontal distance of $A B$ was equal to 60 m , point B elevation $=53.6 \mathrm{~m}$. find the elevation of point A. solution :

$$
\begin{aligned}
& \mathrm{V}=-2^{\circ} 9^{\prime} 00^{\prime \prime} \\
& \begin{array}{l}
\Delta \mathrm{H}=3.668 \mathrm{~m} \\
\mathrm{H} . \mathrm{I}=1.52 \mathrm{~m} \\
\mathrm{H}=60 \tan -2^{\circ} 9^{\prime} 00^{\prime \prime} \\
\\
=2.253 \mathrm{~m}
\end{array}
\end{aligned}
$$

Elev. A + H.I = Elev. B $+\Delta \mathrm{H}+\mathrm{H}$
Elev. $\mathrm{A}+1.52=53.6+3.668+2.253 \rightarrow$ Elev. $\mathrm{A}=58 \mathrm{~m}$

