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Abstract

Solar energy is one of the most important sources of renewable and
sustainable energy, as it is one of the sources of clean and environmentally
friendly energy, and the source of solar radiation coming to the earth is one of the
most important sources of energy that is inexhaustible. The conversion of this
radiation into thermal energy and its exploitation in the energy needs of the earth,
as the solar air heater is the solar system is one of the important applications in
this field.

The thermal performance of a single-pass solar air heater was studied in the
presence and absence of artificial roughness experimental and numerically using
the ANSYS FLUENT version 17 program. It was arranged inline and staggered

to find the best type and the best arrangement.

The duct was designed with dimensions (length * width * height) (2.1* 0.3*0.03)
m. Within the Reynolds number range (3000-10000) (3323,5545,7393, and 9241)
and by the amount and angle of attack o = 60 °. The relative roughness length
(d/H = 1.33), the relative roughness height (e/H = 0.271), the distance between S
(b/H = 0.667) remain constant, and the pitch range p/H= (1.667,3.33,5,6.667) for
inline with I/ H=(0.8335, 1.666, 2.5, and 3.335) for staggered and study the effect

of the p/H of the arrangement inline and the I/H of the staggered arrangement.

In the numerical study, the ANSYS FLUENT version 17 program was used to
simulate the air solar heater within the simple algorithm (SIMPLE) using the
method of finite volumes to solve the three-dimensional equations (continuity,
energy, momentum) in addition to the equations of the disturbance model (k-¢)

and within the same boundary conditions used in experimental side.

Experimental were conducted in the free atmosphere under the sun's rays after
building a model of a device that measures the flow and resistance temperatures.

The results, with the numerical aspect, were largely identical.
VI



The results showed that the Nusselt number increases with the increase of the
Reynolds number, and the friction factor decreases with the increase of the
Reynolds number. The best Nusselt number Nu/Nus=7.8 was obtained at
I/H=1.667 in the arc shape in successive order, and the coefficient of friction was
f/fs=3.8. The thermal performance factor of this arrangement is the best by 3.67

with an efficiency of 74.5%.

\41
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CHAPTER ONE

Introduction

Energy is the primary resource for industrial development and economic
growth in every country throughout the globe. Manufacturing uses around 35%
of the world's total energy supply. The current predicament is exacerbated by the
exponential rise in the usage of fossil fuels[1], which in turn increases pollution
levels in the natural world. In comparison to recent years, demand for gasoline is
anticipated to increase by a factor of three by 2025. Demand for fossil fuels
continues to rise at a faster clip than supply can keep up with. Oil, along with
other fossil fuels, is the primary supply of energy for businesses. Because of this,

reducing energy use is crucial for both economic and ecological reasons[2][3].

The sun's rays are a clean, renewable source of energy that will never run
out[4]. Solar energy may be transferred in the form of thermal energy in a
straightforward manner by using solar air heaters . Because of their inexpensive
price and easy installation, SAHs have grown in popularity as a type of solar
thermal technology. The absorber plate takes up both direct and diffuse solar
radiations, transferring their energy to the air passing below. Solar air heaters'
effectiveness in generating heat is proportional to the amount of energy the
collector fluid contributes to the system. Since air has a relatively poor heat
transfer coefficient, a greater proportion of the energy produced is lost to the
environment. Laminar viscous sub-layer development over a hot surface is
thought to provide thermal resistance to heat transmission. Any passive strategy
for improving heat transmission relies on employing surfaces with a certain
degree of irregularity to provide turbulence in the flow. Creating artificial
roughness in the shape of ribs, grooves, dimples, winglets, baffles, twisted tapes,
mesh wires, etc. on the bottom of the absorber plate etc. [5][6]. Is a common
passive method of improving heat transfer. Increasing convective heat

transmission is the major goal of adopting artificial roughness.
1



Chapter One Introduction

1.1 Solar Energy

Solar energy is an enormous and infinite energy source. The quantity
of solar energy received by the earth is around (1.8x10'! MW)[7], This is
hundreds of times more than its current pace of industrial energy use Solar energy
has the potential to provide all of the world's current and future energy needs,
making it one of the most promising alternative energy sources. Solar energy
benefits from two more elements in addition to its size. It is the most
environmentally benign form of energy when compared to fossil fuels and nuclear
power. Second, it is available for free and in sufficient quantities in practically all
inhabited regions on the planet. However, its use is fraught with complications.
The primary concern is that it is a source of low energy. In many applications,
large collecting surfaces are necessary, resulting in expensive expenses. A second
challenge linked with solar energy consumption is its changing availability
throughout time. Daily and seasonal changes in availability are caused by the day-
night cycle and the earth's orbit around the sun. [8] Moreover, variations result
from the local weather conditions at a particular location. Therefore, it is
necessary to store solar energy for usage when the sun is not shining. The

necessity for storage significantly increases the cost of any system[9].

1.2 Solar radiation

The sun is a sphere of extremely hot, gaseous matter with a diameter of
(1.39 x10° m) at an average distance from Earth of (1.5x10'! m) [7]. The sun
rotates on its axis every four weeks as seen from Earth. It does not, however, spin
like a solid body; the equator rotates every 27 days, while the polar parts revolve
every 30 days. The sun's constituent gases comprise a continuous fusion reactor.
The distribution of sun irradiation on Earth is seen in Figure (1-1). Solar spectral
radiation is the wavelength-dependent energy that enters the earth's upper
atmosphere and is refracted into visible light by an electromagnetic short-wave
absorber[9].
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EARTH'S ENERGY BUDGET

. Reflected by Reflected Reflected from
atmosphere by clouds earth's surface
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directly
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atmosphere

Absorbed by land
and oceans 51%

Figure (1-1): Distribution radiation from the sun on Earth's surface [9].

1.3 Flat plate- solar heater

Solar air heaters are the most common thermal devices used to
transform solar energy into a useable form. Solar air heaters (SAHS) are
chosen over solar water heaters (SWHSs) due to their applicability in many
technical applications. SAHs are safe to use since they are devoid of filth,
corrosion and leakage issues, and they are easy to construct. Conventional
SAHs are composed of a smooth, insulated duct through which air absorbs
solar energy. Along the collection duct, the air's temperature increases. This gas
Is utilized in many of the aforementioned technical applications. Plate for heat
absorption and back plate. The poor heat tolerance of air, despite its many

benefits, limits the use of SAHs in high-temperature operations. [10].
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1.3.1 Solar air heaters types

Solar collectors are utilized for thermal conversion to increase the
temperature of the fluid that flows through the collector. Water and air are the
most widely utilized fluids in solar collectors. Due primarily to the low heat
transfer coefficient between the absorber plate and the air passing through
the collector, SAH fall into two primary categories: The first segment is
contingent on the design of the absorbent surface of the flat plate to maximize the
convection area and the turbulence of the airflow with the black plate. The
thermal efficiency can be enhanced by the use of artificial roughness. See
Figure (1-2a). The number of passageways and the kind of airflow pattern
categorizes the second portion. In addition to an optimum design for minimizing

losses to the environment. As seen in Figure (1-2b)[11].

There are several flat-plate solar collector designs. The most prevalent

varieties are listed below.

+ Active and passive solar collectors are the two categories of solar energy
systems that are available. Passive solar energy is the collection of heat and
light; for example, the passive design uses solar energy to increase the
energy efficiency of a variety of buildings by reducing the demand for day
illumination and the amount of energy required for heating and ventilation.
Active solar energy refers to the storage and transformation of this energy

into other forms, such as PV electricity or thermal energy [12].

« Fins, corrugated, Flat, or grooved collector absorbing plates ,etc. The

plate can be combined with the obstructions.

+¢+ Collectors intended to limit heat losses can be categorized according to
the number of covers they can accommodate one, two, or more.
Increasing the number of covers decreases heat losses from the

cover, but transmits less solar energy to the absorber plate.

4
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s As it can transmit up to 90 percent of the incoming shortwave solar
irradiance while transmitting almost none of the longwave radiation
generated by the absorber plate, glass is commonly employed for glazing

solar collectors.

Wire screens
BEE=E=m==sS=u====

No convex shape
Wave-like Triangular/leaf/
rectangular type

AN TN TN NN NN
Dimple-shaped E obstacles

Needle-like Roughened absorber:
e transverse/inclined/g
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Flow pass
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(b)

Figure (1-2) Flat plate-SAHSs configurations:(a) Absorber surface design, and(b)
Channel flow patterns[11].

5



Chapter One Introduction

SAHs can be classified based on the mode[13], as shown in the Figure below:

Solar air heaters
1
L) 1 1 L] L] L)
| | | | | |
Collector Absorbe Absorber Absarber Flow shapes Hybrid
cover glass rmaterial shape flow pattern pe collectors
| [ [ | | |
S5AH
| [ [ | | |
|

LorEle d Matrix with fins on t_)oth . Double pass Water— air Spaf:e
SAH sides heating

|_ Triple cover |_ . |_ :

Applications

Drying

Preheating

Figure (1-3): Classification of SAHSs.

1.3.2 Components of solar air collector

Figure (1-4) illustrates the components of a conventional SAHSs, which are
described below[7].

1. Glass cover: As it can transmit up to 90 percent of the short-wavelength
solar irradiance, one or more sheets of glass are typically employed for

glazing solar collectors.

2. Fluid passageway : fins , tubes, or channels that convey or guide the

heat transfer stream from intake to output.
3. Absorber plate: This absorber sheet may be grooved, undulating, or flat.
4. Insulation: minimizing heat loss via the sides and base.

5. Container: All collecting components are shielded from environmental

harm, such as moisture and dust.
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Solar radiation

Glass cover

Absorber plate

insulation

Air passage

Figure (1-4) component of conventional SAHs

1.4 Problem statement

As stated previously, solar air heating is one application of renewable

energy.

> The low heat transfer coefficient between the absorber plate and the
flowing air creates high thermal resistance in the airside and high absorber
plate temperature, hence diminishing the SAH's energy conversion
efficiency. Therefore, it is vital to optimize the heat transfer performance

in the SAH duct in order to increase energy and efficiency.

» One of the most promising methods for the enhancement of heat transfer
rate, which has been proposed recently, is the artificial roughness

technique.

» The use of artificial roughness in the test area on the absorbent plate leads

to the formation of turbulent flow that increases heat transfer.
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1.5 Objective of the work

The specific aims of this thesis may be summed up in two sections as follows:
()  Experimental approach

The purpose of the study is to increase heat transfer to the moving
fluid by strategically positioning two types of impediments and flow vectors to
achieve the maximum amount of heat transfer while minimizing losses to the
greatest extent feasible. The research will be applicable. In addition, we employ
two forms of surface roughness (S shape and arc shape) and two ways of

arrangement for these shapes (inline and staggered).

a) Manufacture and testing of a SP-SAH in outdoor environments with and

without artificial roughness using a solar simulator.

b) Examining how particular factors, such as solar flow density and airflow rate,
influence the increase in air temperature and the effective thermal efficiency

of a single pass-SAH with and without artificial roughness.
(1)  Numerical Approach

The investigation will be conducted numerically using the simulation
software Ansys Fluent version 17.0. For the actual experiment, the same
conditions will be employed. To compare numerical findings to experimental

results and to obtain optimal convergence and accurate outcomes.
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Chapter Two

Introduction

This chapter presents a group of experimental and numerical studies that
have improved the low coefficient heat transfer for solar air heaters using
artificial roughness, as present address studies using the artificial roughness rib

and vortex generators, as well as ailerons and fins, etc.

2.1 Studies on the artificial roughness of rib

Many investigations depend on the design of roughness that helps boost

heat transfer with minimal pressure loss.

Sahu et al.[14] experimental, study on, the heat, transfer rate and friction,
factor, of SAH using artificial, roughness, in the form of broken ribs at o =90°.
The roughness wall has roughness with pitch (P) ranging from 10-30 mm, height
of rib of 1.5 mm and aspect ratio w/h = 8 with a value of Re= 3000-12000 where
the value of Nu was found, at, p = 20 mm and the maximum thermal efficiency
was obtained by 83.5%.

Saini et al.[15] Experimental investigation presented to study the rate of
heat transfer and the f for SAH. Using an artificial roughness in the form of
dimples that leans on the absorbent plate with parameters of e /Dy, =0.018-0.037,
p /e=8to 12 and Re = 2000-12000 where Nu was chosen with the change of
parameters and found that the highest value at e/ Dy = 0.037, p/ e = 10 and
frication factor at e/Dy = 0.02809.

Alam et al.[16] The researchers investigated the number of SAH, that
stands out with the sides of the conical protrusion on the Nu and the friction
factor with different parameters of Re=(4000-16000). By conducting a numerical
simulation using the program of the solar intensity of 1000 W / m?, where at

12
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e /Dp=0.0289, p/e = 10. Thermal efficiency are found as 69.8% and enhancement
factor 1.346%. As shown in figure (2-1).

II:”' V' : =
I RAC AL il Ribs

[— \**'JVK\“»,,A - — 7

| -y g .

| Air inlet [ Conical ribs 5

[ \\t ] I |

k| v

‘ d
| —»|

Figure (2-1): Geometry artificial roughness[16]

Ghritlahre et al.[17] illustrates experimental study to shown the effect of
using the arc shape of the shadow on the performance of the SAH with a
practical achievement and the rate of heat transfer, as he used a wire under the
curved arc in the form of an arc. p/e = 10 parameters were used and attractive
angle o.=60°and e / Dy = 0.039 where the best thermal performance at the level
of solar Intensity 853.3 W/m? is for upstream apex = 72.2% and for down apex =

63.1% compared to smooth.

2.2 Studies using Fins and Baffles / Vortex Generators

Zhou et al. [18] Experimental work present performance of SAH and
characteristics of heat transfer by using curved trapezoidal winglet type vortex
generators with parameters a=20°, § = 0° — 15° ,b/a=1/2 , and Re=3000-27000.
They found the ratio of Nu=2.56 and f=3.18 was obtained when using
parameters § = 0°,a = 20°, Re = 18000.Where the thermal-hydraulic
performance was highest 1.3 at Reynolds No. 18000 As shown in figure (2-2).

13
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Curved trapezoidal winglet

Figure (2-2): Curved trapezoidal winglet type vortex generators [18]

Yadav et al. [19] Numerical investigation present using square sectioned
transverse rib roughness on absorber plate of solar air heater to study performance
and flow characteristic with parameters e/Dy = 0.02-0.042 , p/e = 7.14 — 35.7,
a= 60°, and Re = 3800-18000 that found The best optimization of the Nusselt
number was obtained at parameters p/e = 7-17,e/D;=0.042, Nu = 2.860. as
shown in figure (2-3).

Figure (2-3): Square transverse ribs[19]

14
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kumar et al.[20] The researcher presented an experimental and numerical
investigation to study the effect of using sinusoidal corrugated artificial
roughness as shown in figure (2-18) with parameters of Re= 4000-15000,
p/e=10-18, e=1mm on thermal performance and heat transfer coefficient. These

parameters found that the thermal performance factor is 2.05.
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Figure (2-18): Sinusoidal corrugated artificial roughness[20]

Chabane et al.[21] Experimental study of heat transfer and thermal
performance was conducted on the use of a longitudinal fin on a solar air heater
and its effect on the heat transfer coefficient, as it was discovered that at a
mass flow rate of (0.012-0.016) kg/s, The values of thermal efficiency at the
mass flow rate of 0.012 and 0.016 kg/s with and without using fins varied from
40.02% to 51.50% and from 34.92% to 43.94%, respectively. As shown in figure
(2-4).

15
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=
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Figure (2-4) longitudinal fin on a solar air heater. [21]

Exterior plate

Skullong et al.[22] illustrates negative ways of enhancing heat transfer
SAH is artificial roughness, and one of the things that enter into the calculation
of artificial roughness is the effect of the size of the ribs and their arrangement
on heat transfer as shown in figure (2-5). Therefore, the research presented a
practical investigation on the effect of the size and arrangement of the ribs for
a SAH with the parameters of Re=5000-24000 where it was used square and thin
ribs 90° with three arrangements that shows the effect of these parameters on
heat transfer and friction losses on a smooth surface. was obtained that the
inline rib array provides the maximal heat transfer while staggered thin ribs
show the highest thermal improvement factor whereby obtained Nu/Nu,=2.13 -
2.16.

16
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(b)

Figure (2-5): (a) Square and (b) Thin ribs 90 ° artificial roughness[22]

Skullong et al.[23] An experimental investigation on thermal performance
Improvement in a solar air heater channel with combined wavy-groove and delta-
wing vortex generator (WVG) placed on the absorber plate having a uniform wall
heat-flux is carried out. With parameter as g/h = 0.4-1, a= 45°-60°, and Re =
4800-23000. A thermal improvement factor of 2.24 is obtained when such a
coarseness is used with a ratio Nu/Nuo=5.74, f/f0=17.01. as shown in figure
(2-6).

d

20 mm N
10 mm

20 mm

Figure (2-6): Wavy groove combined with perforated delta wing. [23]
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Singh et al. [24] The present study investigates the heat transfer and
pressure drop characteristics of a two-pass channel (AR = 1) featuring ribs-alone,
dimples-alone and combination of ribs and dimples. using V-shape cylindrical
dimples as shown in figures (2-7). For parameters of Reynolds number ranging
from 19500-69000, e/Dy=0.125, P/e=16, where they found the thermal

performance factor equal to 1.65.

16e

&S

——————__ Rib turbulator

‘ Cylindrical dimple

Wall featuring ribs
and dimples

Figure (2-7): Geometry artificial of cylindrical dimples[24]
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Grill et al.[25] Numerical investigations on thermo-hydraulic performance
of broken arc rib in a rectangular duct of solar air heater. The rib parameters were
P/e = 8, d/'w = 0.65, g/e = 1.0, a/90 = 0.333, and e¢/Dy = 0.043. And study at
Reynolds number 2000-16000. The highest thermos-hydraulic performance
parameter achieved was 1.94 at 0.65 relative gap position, as compared to 1.78

for continuous arc rib roughened duct. As shown in figure (2-8).

\ \

/-

Figure (2-8): Broken arc rib. [25]

Singh et al.[26] CFD analysis of solar air heater duct having square wave
profiled transverse ribs as roughness elements ribs have parameter as p/e =
4 to 30, Re=3000-15000, and e/D = 0.042. The Nusselt number and the
friction factor (f) are improved when using this form of synthetic roughness
Nu = 2.14, f = 3.55. as shown in figure (2-9).

Figure (2-9): square wave profiled transverse ribs. [26]
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Kumar etal.[27] Experimental investigation to enhance the heat transfer
of SAH using artificial roughness. The researcher presents using twisted
roughness on the solar radiation plate as shown in figure (2-10) with parameters
of Re =3500-21000, p / e = 8, and different values of a= 30° - 90° and the twisting
rate isy / e = 3to 7. The practical experiment demonstrated an increase in the
heat transfer coefficient compared to smooth surface so, atp/ e =28, a = 60°,

andy /e =3they getratio of Nuand the friction factor (2.46, 1.78) respectively.

Figure (2-10): Twisted roughness[27]

Promvonge et al.[28] An experimental work has been carried out to
investigate the influence of combined turbulence promoters (or turbulators) on
forced convection and fluid flow resistance behaviors in a solar air heater duct.
Two turbulators included V-ribs with punched holes and chamfered V-grooves
were introduced. The V-rib and the V-groove having the attack angle of 45 were
mounted repeatedly on the absorber plate with their arrangements for V-tip
pointing upstream and pointing downstream. Air as the test fluid flowed into the
duct with Reynolds number (Re) ranging from 5300 to 23,000. The rib parameters
were three relative rib-pitches (RP = 1.0, 1.5 and 2.0), three inclination angles (b
= 45° 0°, and -45°) of rib punched holes having a single relative rib height or

blockage ratio, RB = 0.5. The groove parameters included three relative groove-
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pitch lengths (RP = 1.0, 1.5 and 2.0) similar to the V-rib case. The highest TPF
of about 2.47. As shown in figure (2-11).

Figure (2-11): Combined punched V-ribs chamfer VV-grooves. [28]

Tongyote et al.[29] An experimental work has been conducted to explore
the influence of the combined V-rib and chamfered-V-groove vortex generator
(VG) on flow and heat transfer behaviors in a heat exchanger channel having a
constant heat-flux on the top wall. The investigated geometrical parameters were
three relative rib pitches (RP = P/H =1.0, 1.5 and 2.0) and relative rib heights
(called “blockage ratio”, RB=e/H=0.3, 0.4 and 0.5) at a single attack angle (o
=45°), and Re=5300-23000. The highest TPF= 1.907 that obtained at parameter
p/H=1.5, e/H=0.4. As shown figure (2-12).
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Figure (2-12): VV-shaped ribs and grooves. [29]

A Kkhanlari et al.[30] Experimental and numerical study of the effect of
integrating plus-shaped perforated baffles to solar air collector in drying
application to investigate the rate of heat transfer heat performance of SAH.
using baffles in three forms PPSCDB (parallel pass solar collector with
double baffles ), with baffles, and without baffles where it was found at a mass
flow rate of 0.011 kg / s , thermal efficiencies of PPSC, PPSCB and PPSCDB
are in the range of 62.10-66.32%, 65.72-69.62% and 71.12-75.11%, respectively.

as shown in figure (2-13).

Figure (2-13): Geometry artificial roughness baffles[30]
22
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Bayralcu et al.[31] Numerical and experimental study of the heat transfer
and hydraulic performance of solar air heaters with different baffle positions. The
numerical study was performed on four cases corresponding to different
placements of baffles with Reynolds numbers ranging from 2370 to 8340.
Although the highest Nusselt number value obtained was 70 in case 4 (Re =
8340), it produces a great pressure drop, while the lowest friction factor values
were found to be 0.05 for cases 1, 2 and 3, with nearly identical values (Re =
8340). Case 2 (50%Down) has been selected as the best configuration and an

effective baffle position from the point of view of thermo-hydraulic performance.

Wang et al.[32] When using artificial roughness to increase thermal
efficiency and improve the thermal performance of SAH. The researcher
experimented with an internal process using the S-shaped with a gap as shown in
figure (2-14) with parameters of Re= 2000-20000, p /e=20-30, e/ D = 0.023-
0.036, and under solar radiation intensity (450-650W/m?).The optimization of
thermal efficiency increased by (13% - 48% )compared to the smooth channel

under different conditions.
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Figure (2-14): S-shaped with a gap artificial roughness[32]
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Baissi et al.[33] Illustrates the techniques of enhance heat transfer and
thermal performance of SAH by use of artificial roughness. Here, the
researcher shows when using roughness in the form of barriers in the form of a
longitudinal delta that used two cases of barriers with holes and barriers without
holes as shown in figures (2-15). With different parameters, Re= 2500-12000, p /
e =3-5,e/ h=0.8, a=45°through these parameters, improvement was obtained
in Nu and an increase in heat transfer and hypotension as Nu = 6.94, f = 45.83
compared to the smooth channel and the highest thermal improvement factor
2.26.

-~ Inflow

Figure (2-15): Longitudinal delta baffles shaped[33]

24



Chapter Two Literature Review

Mahanand et al.[34] Numerical investigation the heat transfers and flow
fields analysis in solar air heater duct having of transverse inverted-T shaped ribs
Is performed. for the parameters p / e=7.14-17.86, Re=3800-18000. The study
dealt with the use of a two-dimensional RNG-k-& model to simulate a program
with average solar radiation intensity in the form of heat flux of 1000 W/m?. A
Thermal enhancement factor of 1.87 is obtained as a result of enhancement in

heat transfer for the SAH. As shown in figure (2-16)

TﬁT ‘ 1 ; I I ‘ F EIC(].4 mm)
l P l \1 e, [ s T
nverted-T shaped ribs

(10 mm)

TP lr ‘ 1 1 1 ; 1 Ie (1.4 mm)
(15 mm)

T ‘ ‘ T T i Ie (1.4 mm)
I~ P A
(20 mm)

l T 1 ‘ Ic (1.4 mm)
A

P

(25 mm)

Figure (2-16): Transverse inverted-T shaped ribs. [34]

Olfiten et al.[35] numerical investigation presented to study the effect of
using two different types of baffles on the thermal performance of a SAH at
the rate of Re=(100-2000), at an angle of attack of 30° fixed, in the form of a
protracted at o =90°. Where Nu = 148.15 and pressure drop= 316.67 at Re= 2000

increase compared to the model without baffles as shown in figure (2-17).
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Figure (2-17): Geometry artificial roughness rectangular baffles[35]

Smith et al.[36] An experimental and numerical analysis to
investigation thermal evaluation of flow channel with perforated-baffles.
The perforated-baffles were designed in two forms: perforated-baffle (PB)
and perforated-baffle with square wings (SW-PBs). Transverse solid
baffles (TBs) were also tested for an assessment. All baffles had an
identical height of 12 mm (e/H = 0.3). Experimental results showed that
SW-PBs offered better Nu than PBs. It is also seen that PBs and SW-PBs
caused lower pressure loss than TBs by around 20.49% and 13.98%,
respectively. The reduction of friction loss was primarily due to the baffle
perforation. In addition, the PBs yielded the thermal performance factors
(TPF) up to 1.01 at the lowest Reynolds number of 6000. As shown in
figure (2-18).
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Isometric view

Figure (2-18): The perforated-baffles

Promvonge et al.[37] An experimental investigation the effect of arc-
shaped twisted-baffles on augmented heat transfer in a rectangular duct solar air
heater. Five attached angles («) between 20° and 90° were used to form the arc-
shaped twisted-baffle (T-ABs).as shown in figure (2-19). Some factors, such as
pitch ratio (p/w) and Re (4000-20,000) are expressed as dimensionless
parameters. For each experiment at a different pitch lengths (p), with p = 12 mm
(p/w=4.0),p=18mm (p/w=6.0),p=24mm (p/w=28.0), andp=30mm
(p/w = 10.0), respectively.The optimum condition is achieved using T-ABs at an
attached arc-shape angle of a = 90° p/w =4.0 and Re = 4000, where the heat
transfer rate (Nu), friction factor (f) and TPF are found to be, respectively, 3.31,

4.68 and 1.98 times greater than those of a plain channel.
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2.3 Summary

Figure (2-19): Arc-shaped twisted-baffles. [37]

Table 2.1 shows the summary for this chapter:
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Author Year Geometry

1. Studies on the artificial roughness of rib

Sahu et al.[14] 2005  broken ribs at o =90°
Saini et al.[15] 2008 dimples
Alam et al.[16] 2017 conical protrusion

Table 2-1. Literature review summary.

Research type

Experimental

Experimental

Numerical

29

Results summary

The maximum thermal efficiency was obtained by
83.5%.

The maximum value of Nusselt number=73 has been
found corresponds to relative roughness height (e/D)
of 0.0379 and relative pitch (p/e) of 10.

The minimum value of friction factor=0.06 has been
found correspond to relative roughness height (e/D) of
0.0289 and relative pitch (p/e) of 10.

Thermal efficiency are found as 69.8% and

enhancement factor 1.346%
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Ghritlahre et al.[17] 2020 arc shape of the

shadow

2. Studies using Fins and Baffles / Vortex Generators

Zhou et al. [18] 2012 curved trapezoidal
winglet type vortex
generators
Yadav et al. [19] 2014 square sectioned

transverse rib

kumar et al.[20] 2014 Sinusoidal
Corrugated
Chabane et al.[21] 2014 longitudinal fin

Experimental

Experimental

Numerical

Experimental

Experimental
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The best thermal performance for upstream apex =
72.2% and for down apex = 63.1% compared to

smooth.

The thermal-hydraulic performance was highest 1.3 at
Reynolds No. 18000

The best optimization of the Nusselt number was
obtained at parameters p/e = 7-17,e/D,=0.042,
Nu/Nus = 2.860.

The thermal performance factor is 2.05

The values of thermal efficiency at the mass flow rate
of 0.012 and 0.016 kg/s with and without using fins
varied from 40.02% to 51.50% and from 34.92% to
43.94%, respectively.
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Skullong et al.[22]

Skullong et al.[23]

Singh et al. [24]

Grill et al.[25]

Singh et al.[26]

Kumar et al.[27]

2016

2017

2017

2017

2018

2019

square and thin ribs
90°

Experimental

combined wavy- Experimental
groove and delta-
wing vortex generator
(WVG)
V-shaped ribs and Experimental
cylindrical dimples

broken arc rib Numerical

square wave profiled Numerical

transverse ribs

twisted roughness Experimental
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obtained that the inline rib array provides the maximal
heat transfer while staggered thin ribs show the
highest thermal improvement factor whereby obtained
Nu/Nu,=2.13 -2.16.

Thermal improvement factor of 2.24 is obtained when
such a coarseness is used with a ratio Nu/Nuo=5.74,
f/fo=17.01.

Thermal performance factor equal to 1.65.

The highest thermos-hydraulic performance parameter
achieved was 1.94 at 0.65 relative gap position

The Nusselt number and the friction factor (f) are
improved when using this form of synthetic roughness
Nu = 2.14,f = 3.55.

Atp/ e=8,a= 60°, andy/e =3 they get ratio of Nu
and the friction factor (2.46, 1.78) respectively.
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Promvonge et al.[28]

Tongyote et al.[29]

khanlari et al.[30]

Bayralcu et al.[31]

Wang et al.[32]

Baissi et al.[33]

2019

2019

2020

2020

2020

2020

combined turbulence
promoters
combined V-rib and
chamfered-V-groove
vortex generator
plus-shaped
perforated baffles

different baffle

positions

S-shaped with a gap

Longitudinal delta
baffles shaped

Experimental

Experimental

Experimental and

numerical

Experimental and

numerical

Experimental

Numerical
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The highest TPF of about 2.47

The highest TPF= 1.907 that obtained at parameter
p/H=1.5, e/H=0.4

Thermal efficiencies of PPSC, PPSCB and PPSCDB
are in the range of 62.10-66.32%, 65.72-69.62% and
71.12-75.11%, respectively.

the highest Nusselt number value obtained was 70 in
case 4. the lowest friction factor values were found to
be 0.05 for cases 1, 2 and 3, with nearly identical values
(Re = 8340).

The optimization of thermal efficiency increased by
(13% - 48% ) compared to the smooth channel.
Improvement was obtained in Nu and an increase in

heat transfer and hypotension as Nu = 6.94, f = 45.83



Chapter Two

Literature Review

Mahanand et al.[34]

Olfiten et al.[35]

Smith et al.[36]

Promvonge et al.[37]

2020

2020

2023

2023

transverse inverted-T

shaped ribs
two different types
of baffles

perforated-baffles

arc-shaped twisted-
baffles

Numerical

Numerical

Experimental and

numerical

Experimental

33

compared to the smooth channel and the highest

thermal improvement factor 2.26.

Thermal enhancement factor of 1.87

Where Nu = 148.15 and pressure drop= 316.67 at Re=

2000 increase compared to the model without baffles.

Thermal performance factors (TPF) up to 1.01

Where the heat transfer rate (Nu), friction factor (f) and
TPF are found to be, respectively, 3.31, 4.68 and 1.98

times greater than those of a plain channel.


https://www.sciencedirect.com/topics/engineering/friction-factor
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Chapter Three

Introduction

In this chapter presents the use of the ANSYS FLUENT version 17. Which
was used for CFD analysis to simulate a SAH with dimensions (length * width
* height) (2100 * 300 * 30) mm with and without artificial roughness. In this

numerical analysis, the following is done:

1. The first step is to create an architecture using the SolidWorks 2021

study program.

2. The second step after entering the variables and parameters of the model,
the program solves the equations needed to simulate it in each element of

the mesh until it reaches the best convergence.

3. The third step: When the best affinity is reached, the smooth results will be
compared with the empirical equation, and after that, the artificial

roughness will be added

3.1 Building model

A simplified physical model must be established in order to examine the heat
transfer performance and flow properties of the air channel of SAH. Examines
the duct depicted in Fig. (3-2) with one hot absorber plate and three smooth,
insulated sides. The model was created using SolidWorks 2021. In addition,
exported to ANSYS DESIGN MODELER. The dimensions of the duct are as
follows: L=2.1 m, W =0.3 m, and H = 0.03 m. The angular S-shape and arc-
shape parameter is kept constant at o=60°. In Table 3-1, the parameters that were

used in drawing the model are clarified.
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Table (3-1) parameters of geometry used in SAH

S. No. Parameter Units in (m)
Width, W 0.3
Height, H 0.03
Thickness of glass 0.04
Duct Thickness of glass-wool 0.5
parameter Glass covers the distance from the plate 0.03
absorber
Length, L 2.1

3.2 Mathematical Modeling

The current study included three-dimensional simulation of SAH. The following

assumptions introduced as:

1.

2.

The flow is steady state, incompressible flow and three-dimensional.
There is no slip.

Thermal conductivity does not change along the duct.

Homogeneous and isotropic roughness material and wall duct.

No heat loss from the bottom due to good insulation with a thickness of 40

mm.

The heat loss from the glass due to radiation from the absorber plate

neglected.
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3.3 Meshing

Mesh is the most important determinant in the numerical simulation
process used as it plays a role in determining the accuracy of the solution
Created in ANSYS ICEM CFD V.17 the mesh is well fabricated near the walls
and roughness in the middle to show the effect of the boundary layer. A fine
mesh is adopted for analysis after careful examination. There are two regions,
the first region is where the fluid flows over the absorbing plate of solar radiation,
whose dimensions are (2.1 * 0.3 * 0.03) m. The second region is the artificial
roughness region with a thickness of 0.5 mm with parameters 1 / H= (0.8335,
1.666, 2.5, and 3.335), p/H= (1.667, 3.33, 5, and 6,667), the value of the attack
angle is fixed at a=60° in addition to d/H=1.33, b/H=0.667, e/H=0.4. The
intensity of solar radiation in the form of heat flux was taken as (965,967,966 and
966) W/m? for simulation. The number of iteration used to obtain the results is
500.
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()
Figure (3-1): (a) & (b) The computational meshing of the various shape of

geometry at o=60° (c) Elements size of rough surface with S and arc shaped

3.4 Grid-Independent study

In a numerical inquiry, obtaining an accurate result of Nu and for the
suggested geometry is vital, and ANSYS ICEM CFD V.17 is used for meshing -
grid element distribution. Validating mesh grid-independent test to forecast Nu
and values yields an appropriate computation analysis outcome. Variable element
sizes [four distinct values ranging from 1 mm to 4 mm] were utilized to determine
the optimal element cell size for the current operation. Table (3-2) outlines the
validation outcomes. A typical view of the mesh can be seen in figure (3-2).
According to the proposed element size, a no uniform triangular grid is generated
using a fine mesh solution and convergent engagement between 8156465 and
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14282863 element cells for arc shaped and for S-shaped between 4864379 and
17355745. The largest Nu divergence was found in the 9859884-element cell,
whereas the average Nusselt number variation showed the least deviation at

+6.7% for arc shape and S-shape at +7.1% and the average frication factor

variation showed the least deviation at +7.4% for arc shape and S-shape at +7.9%
. Consequently, the 17355745-element cell for S-shape and 14282863 is utilized
for analytical research.

(@) (b)

(©) | (d)
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(€) (f)

(9) (h)
Figure (3-2): The computational grid (a) 8156465 cells (b) 9326598 cells (c)
11598745 cells (d) 14282863 cells (e) 4864379 cells (f) 6659874 cells (g)
12598745 cells (h) 17355745 cells.

Table (3-2): Grid Independent Validation

Geometric Number of elements
Smooth surface 1485950-2580000
S-shape 4864379-17355745
Arc-shape 8156465-14282863
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3.4 The physical material used in simulation

1. The rectangular channel used is made of galvanized iron according to the
characteristics mentioned in table (3-4) as in figure (3-3).

0175 0.525

Figure (3-3): SP-SAH duct

2. The radiation absorbing plate is made of aluminum as shown in
figures (3-4).

0.700(m)
]

0175 0525

Figure (3-4): Absorber plate
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3. Glass

The glass cover absorbs small amount of solar energy which transferred to
heat. In addition, there is a radiant thermal energy from absorber plate received
by the glass cover due to the temperature difference between them. The heat
gained by glass cover is transferred to the ambient air by convection. Another
function of the glass is to prevent dust from entering the absorption plate from

the outer circumference.

Table (3-3): the properties of glass

Properties Specification
Density 2500 kg/m3
Thermal conductivity 0.96 W/m/°C
Specific heat 840 J/g K

0175 0525

Figure (3-5): View of glass
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Table (3-4) the physical properties of thermal-hydraulic of present work

[38]
Properties Air Aluminum GI
Density (p) 1.225 kg/m3 2719 kg/m? 7870 kg /m®
Specific heat () 10064 J/kg .k 871 J/kg .k 896 J/kg .k
Viscosity (p) 1.789 *10° kg/m.s -—---—--—- e
Thermal 0.0242 W/m.k 202.4 W/m.k 2042 W/m.k

conductivity (K)

3.5 Turbulent model

When attempting to forecast improvements in thermal performance using
computational fluid dynamics, validation of turbulent models is crucial. Several
turbulent models, including the a) conventional k- € model, b) Renormalization
k- € model, and c) Realizable k- £, model, were employed to verify the average
Nu of the smooth surface in the current study. In Fig. (6-3), we see a visual
representation of the obtained results .Disruption in the SAHs smooth flow was
discovered to be influenced by the RNG - renormalization k-¢ model. When
compared to the predicted value obtained using Equation (5.1), other models
either fall short or exceed the expected value. It, was, concluded, that the Nu
values in the Renormalization, k- ¢ model were more in line with the empirical
correlation values. The current study simulated SAH to detect increased heat
transport by using the renormalization, group, k- € model. With the CFD method,
several researchers have used the same model[19], [39], [40].
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50

{—=— k-€ standard

45 |—®— k-€ renormalization
|—&— k-€ realizable

40 4 ¥ Dittus-Boelter [60]

35
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Figure (3-6): validation of turbulent models.

3.6 Equations used in the Analysis

According to the assumptions, the form of the equations for the continuity
and momentum equations in three dimensional and the energy equation is as
follows[41]:

1. Continuity Equation (Conservation of Mass):

Ju OJv OJOw

a +@ +E =0 (31)
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2. Momentum equations

» At x-direction

( du N u 4 6u)
pu&x ”ay Waz

_6p+8(8u)+6(6u)+6(au) 32
~ T ox Tax \Mox dy “ay 9z \"' 3z (32)
» Aty direction

( 6‘v+ 6v+ 617)
P ua U@ WE

__6p+6(6v)+6(6‘V)+6(6v) 33
~dy ox Hox dy “ay 0z \" oz (33)
» At z direction

(6w+ 8w+ BW)
'Ouax vﬁy Waz

B 6p+6(3W)+a(aW)+6(aW) 34
= "3 a#a @H@ 5#5 (3.4)

3. Equation of energy:

ot dx  0x2 (3:5)

4. Transport equation for the RNG k-& model [42]

d(pk) 0d(puk) G, ok
T e [(akueff) a] +G,+Gy,—pe—Yy+S, (3.6
a(pk) . @ 9 d 2
o2+ D = = 2 (atters) 5] + Gre (G + GoeGp) + Gaep S — R+

S, (3.7)
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In the equation, the term of turbulence kinetic energy generation is due to mean
velocity gradient it defines as

— 6u]
G = —pu, 6_xl (3.8)
Where p, ¢ crepresent the effective turbulent viscosity and is given by
Hepr = M+ Uy (3.9)
Where u; turbulent viscosity is combining k and ¢ as following:
kZ
e =pCu— (3.10)

In equation the term of turbulence Kkinetic energy generation due to
mean velocity gradient and buoyancy Gpand G, respectively. G, =
0.09, G5, = 1.92 And G,, = 1.44 that constant respectively[43].

3.7 Boundary condition

In general, the computational domain comprises a solar air heater duct with
an absorber plate sitting on the x-y-z plane, surrounded by the intake, outlet, and
both upper and lower wall boundaries. As the equation momentums are solved in
the arithmetic domain, the terms of the non-slip boundary on the airway walls are
assumed throughout the whole state. The surface of the lower wall is insulated,
that is, adiabatic, while the surface of the top wall of the solar air heater is exposed
to average solar radiation during the day in the form of constant heat flux
(965,967,966, and 966) W/m?. The constant inlet temperature is assumed 300 K.
In the case of the input limitations of the arithmetic range, a variable airflow rate
with velocity values of (0.9, 1.5, 2, and 2.5) m/ s is provided. At flow inlets, mass
flow rate inlet boundary conditions are often employed to determine flow velocity

and all related numerical flow parameters. In this simulation, four uniform mass

46



Chapter Three Numerical simulation

flow rates are established at the field's entrance. The velocity of the flow intake
Is computed using the Reynolds number. On leaving the arithmetic domain, the
port boundary condition is given. At the output of the outlet, continuous pressure
of 1.013 x 10° Pa is applied to the outlet boundary condition. The thermo-physical
parameters of air, aluminum absorption plate, and galvanized iron are displayed
in Table (3-4).

() The air velocity at the inlet is variable by fours values.

At inlet section in the X-direction
u=u,v=0,T=T,,w=0

(I At the exit, atmospheric pressure is applied.

At the exit section
u ov oT B

o Vige =gy TV

(I11)  The solar collector is isolated.

Side and bottom walls
q=20

(IV)  The heat flux on the ductsurface inthe amount of (965,967,966, and 966)

W/m? is the average value of days during which the test was carried out.

At the top of the wall (absorber plate)
u=0,v=0,q =965,967,966,and 966 W/m?

3.8 Uncertainty analysis

Verification of Uncertainty the following relationship can be used to
indicate a possible error value in the measurement tools: A related formula
between the dependent and independent variables can be used to figure out the

resultant uncertainty value [55].

47



Chapter Three Numerical simulation

Vo= (55 (2 v)’ (3.11)

R=1(Z2,Z,,...,Z,) (3.12)
Where:
Yr: Uncertainty regarding the results
Z1,Z,,....,7,: Independent factors
Y, Yy o , Y,: Associated variables.

the general formula to be employed to assess the uncertainty of the
experimentally obtained performance analysis in the current study. Table 3-5.
contains the methods used to calculate experimental uncertainty in the

measurement of Nu, Re, f, h, and m

Table 3-5: Range of determined uncertainty error %

Parameter Symbol Units Uncertainty error %
discerption
Mass flow rate m Kg/sec (£0.0004155) 1.478%
Heat transfer h W/m?K (+0.50249) 5.02%
coefficient
Reynolds Re dimensionless (x0.50249) 5.02%
number
Friction factor f dimensionless (x0.0204) 2.04%
Nusselt number N dimensionless (x0.0381) 3.81%
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Capture Four
Introduction

In this chapter, experiments revealed the presence of two types of duct, one
with the artificial roughness of a SP-SAH and the other with a smooth duct. They
were examined at velocities (0.9, 1.5, 2, and 2.5) m/s according to Re (3325, 5545,
7393, and 9241) respectively.

In 2022, from 8:00 a.m. to 3:00 p.m., two SP-SAH models were produced
and tested outdoors in Diwaniyah, Irag (32N latitude and 45E longitude) in actual
sunlight. This section discusses the primary components of the SAH and the

measurement instruments.

4.1 Experimental device

Figure (4-1) depicts an image and an illustration of the two devices, illustrating
their components, as well as the devices' size and uses. The SAH is a rectangular
channel with dimensions of (2.1*0.3*0.03) m insulated with a layer of glass wool
with a thickness of 4 cm and plywood plate with thickness 1 cm and topped by
a layer of glass with a thickness of 4 mm, where the height of the air duct is 30
mm and the area of the solar collector is 0.63 m?. The experimental setup
includes three sections: an inlet section (0.6 * 0.3) m, test section (1.2 * 0.3) m,
and an exit section (0.3 *0.3) m. To get a fully developed turbulent flow used
the below equations to ensure the inlet and exit section compatible with the
design. The aspect ratio of 10 must be maintained. In addition to the lowest entry
and exit parts, the thermal solar collector ASHARE standard (SNHW & 2.5VHW)
measurements were also considered. A principal component of the system is the
solar absorbent panel. A centrifugal pump operated by a control valve propels the
air. Table (4-1) and Table (4-2) range of operating parameters used in SP-SAH
and the value of geometry parameter used of SP-SAH, respectively.
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Table 4-1 Range of operating parameter used in SP-SAH

Operating parameters

Reynolds number “Re”

Prantel number “Pr”

Relative roughness length “d/H”
Relative roughness height “e/H”

The distance between each Arc and S

shapes “b/H”

Relative roughness length “I/H”
Relative roughness pitch “p/H”
Angle of attack

Range

3323, 5545, 7393, and 9241
0.7

1.3

0.271

0.667

0.8335, 1.667, 2.5, and 3.335
1.667, 3.33, 5, and 6.667
60°

Table 4-2 Value of geometry parameter used of SP-SAH

Operating parameters
Entrance length (L1)
Test section (L2)

Exit length (L3)
Width of duct

Height of duct
Hydraulic diameter Dy
Rib height (e)

Pitch (p)

Aspect ratio W/H

Value (m)

0.6

1.2

0.3

0.3

0.03

0.054

0.0102

(5,10,15, and 20) cm

10 (dimensionless)

There are several ways to measure the entry area to reach the fully

developed case of turbulent flow[44]:

1. 10<2<e60 =
D D

~
~

10

o1

(4.1)
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4.2 SAH purpose

Experimental set up has been designed and fabricated to study the effect of
S and arc-shaped roughness elements on the heat transfer and fluid flow
characteristics of a rectangular duct used in solar air heaters. show the contents

of main components of SAH and pictorial view of experimental set up is shown
in figure (4-1).

5
7
4 6 .
. - \\' “'-
3 ) -.\"-\
, x A\
} h T-\ " )
A \ \
: \ - 8 \
/ Rttt isei il ) '\ 10
. { \\.(
1T A g \
l = f >‘ \ -
// l "': ==
1| |/ | B

Figure (4-1): Photograph of SP-SAH
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[1] blower

[6] thermocouples

[2] SAH duct

[7] stand

[3] artificial roughness

[8] data logger

[4] glass

[9] anemometer

[5] control valve

[10] solar power meter

Glass

Test section

Solar power meter

Blower

Thermocouples

Digital manometer

' Data logger

Figure (4-2): Schematic diagram of SP-SAH
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4.2.1 Blower

Airflow blower fixed on port of exit air to pull air through collector as clear in
figure (4-3). 2 Speed, Forward Curve, Direct Drive, Wheel Diameter 5 1/8 In.

Table (4-3) showed the specification of blower.

Figure (4-3) blower

Table (4-3): The specification of blower

Data N Product dimensions
V Hz A LxWxH
220-240 50/60 0.7 | 1350rpm = 11.25x11.25x10.25
inches
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4.2.2 SAH duct

The SAH is a rectangular channel with dimensions of (2.1*0.3*0.03) m insulated
with a layer of glass wool with a thickness of 4 cm and plywood plate with
thickness 1 cm and topped by a layer of glass with a thickness of 4 mm, where
the height of the air duct is 30 mm and the area of the solar collector is 0.63 m?.
The experimental setup includes three sections: an inlet section (0.6 * 0.3) m, test

section (1.2 * 0.3) m, and an exit section (0.3 * 0.3) m. as shown in figure (4-4).

Figure (4-4): SAH duct.

4.2.3 Artificial roughness

It is one of the most essential aspects that helps to enhance the heat
transfer coefficient and is regarded as one of the negative approaches with

varying sizes and forms of artificial roughness depending on the assignment.
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In the experimental examination, a solar radiation-absorbing panel was
made Gl roughness. The first kind employs an arc-shaped rectangular GI strip

with a 60° angle of attack, while the second type is S-shaped in the form of vortex

generators and consists of a Gl strip with dimensions of (0.2 x 4) cm shown in
figure (4-5) and (4-6). Arrange with parameters p/H = (1,667, 3,33, 5, 6.67) for
inline arrangement and parameter I/H = (0.8335, 1.667, 2.5, 3.33) for staggered
arrangement .We determine d/H to be 1.30, e/H to be 0.271, and the angle of
attack (o) to be 60 °.
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Figure (4-5): Absorber plate with artificial roughness arc and S-shape
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Figure (4-6): The schematic view of : (a) SRVG staggered, (b) ARVG inline,
(c) SRVG inline, (d) ARVG staggered.

4.2.4 Glass

Glass is commonly used for solar heater glazing because it can transmit up
to 90 % of short-wave solar energy while transmitting all wavelengths. The glass
used in the experiment has a 4 mm thickness and is exceptionally clear. The glass
avoids loss by isolating the absorbent plate from the outside air and protecting it

from dust and grime.

4.2.5 Absorber plate

The absorbent plate is the most important component of a solar collector.
It is installed into the air duct. The bottom is insulated, while the top is made of
glass. The absorbent board transforms solar energy into thermal energy. It is

formed of an absorbent material, such as the aluminum used in the experiment,
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and its dimensions are (1200 x 300) mm. It is also colored black, since this helps
to increase absorption. Figure (4-7) depicts the absorbent plate. On this absorbent

plate, several artificial roughness will be attached.

Figure (4-7): Absorber plate

4.3 Measurement instruments

To measure all parameters, the following devices are used

4.3.1 Data logger

It incorporates a 32-channel or more Data Logger AT4532x figure (4-8)
that is controlled by a computer, and the flash memory region is powered by direct

electrical supply. Utilize this gadget to display temperature information.
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Figure (4-8): Data logger AT4532x

4.3.2 Solar power meter measurement device

Figure (4-9) shows the TENMARS (TEM-207) radiation meter, which
monitors the intensity of solar radiation directly. For greater precision, while
measuring the intensity of radiation, the measuring instrument must be inclined
to match the angle of the glass on the test section with an angle of 32°. It is
with an accuracy of (x 5%) and of range (0-2000) W/m2. Furthermore, the

device's calibration results as shown in Appendix [A].

Figure (4-9): Solar power meter.
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4.3.3 Wind velocity measurement by Anemometer

Since velocity is a crucial role in improving heat transfer, air velocity must
be monitored using an anemometer type (AM-4206M), shown in the figure
(4-10). In addition, the anemometer's standards provide for accuracy of (5%)
throughout a range of (0.4 — 35) m/sec. was used to track the velocity of the wind.
Calibration is performed at the Diwaniyah meteorological station. The device's

calibration results are shown in Appendix [B].

Figure (4-10): Wind velocity measurement by Anemometer

4.3.4 Temperature sensor thermocouples

Inside and outside the SAH, a K-type thermocouple recorded temperatures to
an accuracy of (0.5% =1 °C ) and range temperature from (-40 to 260 °C).
The temperature spread as follows to measure the predicted temperature in the
solar heater on three sections: entry, exit, and the test portion, specifically, the
thermocouple calibration involves taking readings at three different points: at
ambient, ice, and steam. As shown in Appendix-[C], temperature readings may
be taken using a mercury thermometer and a variety of temperature sensors

connected to a multi-channel data logger of the AT4532 kind. Used k-type
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thermocouples in figure (4-11). shows the arrangement of thermocouples over an
absorber plate in figure (4-12).

» Six sensor fixed in test section for smooth duct
» Six sensor fixed in test section for rough duct
» One sensor in inlet for each devices

» One sensor in outlet for each devices

» One sensor to measure glass temp.

> One sensor to measure ambient temperature.

Figure (4-11) thermocouples k-type
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200 mm| 200 mm 400 mm | 400 mm | 200mm| |50 mm
£
£
°
o
~
0 0
Inlet section test section outlet section
600 mm 1200 mm 300 mm

Figure (4-12) positions of thermocouples.

4.3.5 Digital manometer (pressure differential)

The pressure drop over the collector was measured with a calibrated
digital manometer (512 type) in this investigation. Between the SP-SAH's
inlet and exit ducts is a digital manometer with the following specifications:
operating range of (0 to 35.0) kPa, an accuracy of (0.5%) of the whole scale,
and a resolution of (0.01 kPa). As shown in figure (4-13).
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Figure (4-13): Digital manometer

4.4 Experimental analysis

The Nusselt number, the friction factor, and the thermal improvement

coefficient are used to depict the experiment's dimensionless outcomes.

In the steady state, the rate of heat transfer is determined by assuming that

the rate of heat loss equals the rate of heat transfer. Fromeq. (1), (2) and (3)[46]
Quir = Qabsorber plate (4.2)
where: Qg = mcp,air (Tout — Tin) (4.3)

The test part's convective heat transfer may be expressed as follows:

Qabsorber plate = hA(Tap - Tam) (4.4)
In which[47]
Tam = M (45)

2

And temperature of absorber plate [47]

Top = z Tap/6 (4.6)
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The average heat transfer coefficient that used from experimental data and

after that calculation Nusselt Number Nu from the following expression[48]:

_ mcp,air(Tout_Tin)
h= A(Tap=Tam) (4.7)

and to calculated the hydraulic diameter for rectangular duct[49]:

D, =22 (4.8)

a+b

So now calculated Nusselt number from obtain equation [50]:

Nu=—2 (4.9)

Reynolds number obtain from next equation [50]

vD
Re = P2 (4.10)
u
Friction factor that calculated pressure drop given by[48]:
2 AP 111
~ L/Dy, pv2 (411)

Thermal enhancement factor that expression relative to the smooth duct given
by[51]:

Nu,
( /Nus)
TPF = 1 (4.12)
/g3
The equation of thermal efficiency give by [51]:
_ Qair
n= Al (4.13)
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4.5 Experimental process

One, the measurement devices must be placed and secured in place
once the module has been assembled. The following is a possible explanation for

the utilized measurement tools.

1. Thermocouples: a K-type thermocouple is used to detect temperatures at
six different spots throughout the test portion, including the intake, the
outlet, and the glass. An alcohol thermometer is used to calibrate each
thermocouple to guarantee precision. Connected to a 32-channel data

recorder , the thermocouples save data for subsequent analysis.

2. To provide an accurate reading of the amount of solar radiation falling at a
certain angle per hour, a Pyranometer is installed on the solar still and tilted
to the same degree as the front glass cover. Appendix C displays the

calibration for the pyranometer.

3. Anemometer: a wind speed sensor installed at the duct's output at several
heights to measure the hourly average wind speed in the area. Appendix D

also displays the results of calibrating the wind speed sensor.

4. To determine the pressure differential between the two test portions, a

digital pressure manometer is fastened to the duct's inlet and outlet.

5. The instruments for gauging are activated all of the measurable data is
recorded either automatically (temperature) or manually every half hour
throughout the experiment's time window of 8:00 am to 3:00 pm (wind

speed, solar radiation, and pressure).

6. The studies are conducted on the house's rooftop in Diwaniya. Modify the
test section and the absorber plate's simulated roughness. The studies were
conducted between 18 April and 10 May .
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Chapter Five

Introduction

In this chapter presents the outcomes of our numerical analysis and the
measured data. The results presented here compare the performances of (SP-
SAH) with and without artificial roughness, analyzing the impact of solar
radiation and air flow rate and the relative roughness of pitch and length at a
fixed angle of attack 60° on the Improve heat transfer of turbulent flow through
forced convection. Finally, the validity of the numerical results was confirmed
by comparison with the experimental measurements. At last, a contrast is shown
between the current model and earlier research. For this study, we carry out the

following experiments and calculate the following numerical results:
1. The results of the practical study.

2.  The results of the numerical analysis.

w

Comparison of experimental and numerical results
4. Numerical validation of the study.

5.1 Validation of the results

We can see the impact of changing the flow and roughness parameters on
the heat transfer and frictional qualities of air passing through a rectangular
channel in the figures below. When the smooth channel was present and
functioning, the experimental and theoretical results were compared to those
obtained when the rough channel was present and functioning under identical
conditions. An experimental calculation of the f and Nu for a smooth plate was
used to verify the concept. An ordinary Nu and f equation are used to evaluate
the smooth plate's output against the expected values. As shown below, the

Dittus-Boelter equation [46] [52]may be used to calculate the Nu for a rectangular
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duct of uniform thickness, whereas the Blasius equation [53] can be used to get

the f.

To valid Nusselt number for the smooth SAH using the correlation

equation from the Dittus-Boelter [53] given by shown in figure (5-1):

Nu = 0.023Re%8pr04

Gnielinski Equation given by[41]:

Nu =

B (g)(Re—moo)Pr

1

1+12.7(£)E((pr)§—1)

Where for 3000 < Re <5 *10°

(5.1)

(5.2)
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Figure (5-1): comparison of present work for smooth duct with correlation eq.

for Nu.
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To validate the friction factor for the smooth SAH using the Blasius

correlation equation provided by [54] that is shown in figure (5-2):
f =0.316Re %25  For 3000<R<20000 (5.3)
Petukov Equation given by[54]:

f=(079InRe —1.64)"2  For 3000<Re <5x10°  (5.4)

0.07 - -
= Blasius equation[61]
@ smooth present exp
A— smooth present num
0.06 - ¢ Petukhov correlation[61]
0.05
“ 0.04 e —
0.03 - o
0.02
0.01 T : T y T : T ; T ; T ¥ T !
3000 4000 5000 6000 7000 8000 9000 10000
Re

Figure (5-2): Validation of friction factor
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An experimental test of the SAH was performed with the presence of
artificial roughness and smooth duct. In the city of Diwaniyah between 18 April
and 5 May, 2022. In Irag, at 32°N and 45°E, the city of Diwaniyah is located. The
wind speed on all test days was between (0.3 and 9.72) m/s. Two solar air heaters,
one with arc-shaped synthetic roughness and one with S-shaped synthetic
roughness, were tested and compared with a standard SAH. The Re varied during
the experiments from 3000 to 10000.

The numerical study was carried out under the same conditions and
parameters in which the experimental study were conducted. Figures (5-3 to 5-6)
show a comparison between the result of Nu numerical and experimental for the
present work with different Reynolds number rates. The experimental and

numerical findings exhibited a high degree of concordance.

Figures (5-7 to 5-10) compare the experimental and numerical results of
the friction factor for the current work at different Reynolds number rates. The

experimental and numerical results matched up rather well.
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Figure (5-3): Compare the results of the Nu numerical and practical at p/H =

3.33 for an S-shaped inline arrangement.
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Figure (5-4): Compare the results of the Nu numerical and practical at I/H =

1.667 for S-shape staggered arrangement
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Figure (5-5): Compare the results of the Nu numerical and practical at p/H =

3.33 for arc-shape inline arrangement.

220

215

210

205

200

195

190

185

180

175

170

Num. study (I/H=1.667)
Exp study (I/H=1.667)

T
3000

T T T T T T T T T
4000 5000 6000 7000 8000
Reynolds number

T
9000

10000

Figure (5-6): Compare the results of the Nu numerical and practical at I/H =

1.667 for arc-shape staggered arrangement.
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Num. stydy (p/H=3.33)
Exp. stydy (p/H=3.33)
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Figure (5-7): Compare the results of the f numerical and practical at p/H = 3.33
for S-shape inline arrangement.
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Figure (5-8): Compare the results of the f numerical and practical at I/H = 1.667

for S-shape staggered arrangement
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Figure (5-9): Compare the results of the f numerical and practical at p/H = 3.33

for arc-shape inline arrangement.
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Figure (5-10): Compare the results of the f numerical and practical at I/H =

1.667 for arc-shape staggered arrangement.
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5.2 Effect of solar irradiance

Figure (5-11) illustrates diversity of global solar radiation over the length
of the day for the working hours from 8 A.M. until 3 P.M. According to the four
different days, the figure shows that the gradual increase of global solar radiation
until it reaches its maximum value of 1036 (W/m?) at mid-noon and then
gradually decreases until it reaches its minimum and also show the influence in
some hours that because of the clouds, shadows, and dirt. The solar radiation
meter installed with the tilt angle at the same angle of inclination as the solar

collector to take real readings of the solar radiation falling on the solar collector.
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Figure (5-11): The global solar radiation
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5.3 Velocity distribution study

Figure (5-12) shows velocity contours for airflow along the SP-SAH at v=2
m/s, and at p/H=3.33 at different x/L from (0.6, 0.7, and 0.8) (a) inline arc, (b)
staggered arc (c) inline S-shaped (d) staggered S-shaped. This figure show the
velocity contour at parameters p/H = 3.33 of the figure (a & c) in inline order. In
addition, at I/H = 1.667 of the staggered shape of the figure (b & d), at Re=7393
it is noticed that secondary vortices form under the primary vortices opposite to
the primary vortices, causing an increase in air mixing. This happens in the

staggered figure shown in Figure (b & d), which is more than inline in (a & c).

5.4 Temperature distribution study

Figure (5-13) shows that temperature distribution across the cross-
sectional region, the X-direction. To know the effect of the synthetic roughness
of the shape (arc and S-shape) in the inline and staggered arrangement at p/H =
3.33 and I/H = 1.667, respectively. It is possible to see it at a velocity of 2 m/s at
Re=7393. Figure (b & d) with a staggered arrangement shows the temperature
distribution is better than the values of (a & ¢). The most important heat transfer
mechanisms are the transfer of momentum between the main corners and vortices
and the interaction of these vortices with the boundary layer on the surface of the

absorbent plate.
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(a) S-shape inline

(b) S-shape staggered

(¢) Arc-shape inline |

STV VYV

(d) Arc-shape staggered

XYL= 0.6 xL= 0.7 xL= 0.8
Figure (5-12): Velocity contours for airflow along the SP-SAH at v=2 m/s, and

at p/H=3.33 at different x/L :(a) S-shape inline, (b) S-shape staggered (c) Arc
shape inline (d) Arc shape staggered.
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(a) S-shape inline

(b) S-shape staggered

({c) Arc-shape inline

(d) Arc-shape staggered

e "

L= 0.6 xL= 0.7 xL= 0.8
T | [ + NN
307 312 314 317 319.382 325 335 345 355 K

Figure (5-13): Temperature distributions for airflow along the SP-SAH at v=2
m/s, and at p/H=3.33 and I/H=1.667: :(a) S-shape inline, (b) S-shape staggered
(c) Arc shape inline (d) Arc shape staggered.
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5.5 Influence of p/H on the temperature and velocity distribution.

Figure (5-14) the temperature profiles of the flux on the plate can be
illustrated using the artificial S-shaped roughness of inline order. The effect of
the S-shaped roughness on the temperature distributions is clearly shown. The
first S-shape at x/L=0.4 affects the temperature distribution along the SAH and
the channel surface reach to 319 K, especially at x/L=0.95, where the exit
temperature is the highest 322 K. This is due to the presence of a separate vortex
formed after the first row compresses the main vortex, which enhances fluid
mixing and heat transfer in areas close to the absorber plate. A gradual increase

in temperature is observed from (x/1 = 0.4) to (x/I = 0.95).

Temperature contours
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Figure (5-14): Temperature and velocity contours for airflow along the SP-SAH

at v=1.5 m/s at p/H=3.33 for S-shape inline arrangements.



Chapter Five Results and Dissection

Figure (5-15) depicts a staggered arrangement of S-shape artificial
roughness at Reynolds number (5545) with different x/L, demonstrating that the
vortices formed in the first row disrupt the thermal boundary layer. It starts to
Increase as it increases (x/l). Where it is observed at x/lI = 0.4 the temp reach to
320 K, the vortices start with the presence of artificial roughness, and the
temperature distribution begins to increase, as a noticeable increase in the speeds
resulting from the acceleration of the flow is observed after x/I = 0.6 temp. is 323
K. At x/I = 0.8 temp. is 324K and x/l = 0.95 temp. is 325 K, vortices are formed,

which leads to better heat transfer.
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Figure (5-15): Temperature and velocity contours for airflow along the SP-SAH
at v=1.5 m/s at I/H=1.667 for S-shape staggered arrangements with different
X/L.
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Figure (5-16) shows the temperature and velocity distribution of an arc-
shaped artificial roughness with inline arrangements with parameters of a
constant Reynolds number of 5545 and p/H = 3.33. Where the main vortex is
responsible for the deformation of the boundary layer, at x/I = 0.4 the temp is
reach 347 K, vortices begin to form that break the boundary layer and the
temperature starts to increase. It is observed that the greater the x/1=0.95, the
higher the temperature 353 K, and this is due to the high disturbances near the arc

near the absorption plate.

| | VLA
| |
120000 \
0300 ‘ l l l ‘ ‘ et Y04
l9.106e-001 R 336202
72856001 " | l3.3060+002
54646001 ‘ l l l \ S
36426001 | ‘ | 31054002
I1.az1e-oo1 313064002
0.000e+000 Ia.ouemuz
ms*1) " 3008et002  VL~08

VL0935

Figure (5-16): Temperature and velocity contours for airflow along the SP-SAH

at v=1.5 m/s at p/H=3.33 for arc-shape inline arrangements.
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Figure (5-17) shows the temperature and velocity distribution of an arc-
shaped artificial roughness with staggered arrangements, with parameters of a
constant Reynolds number of 5545, p/H=3.33, and an angle of attack of 60°.
Where it can be observed at x/l = 0.4 temp is reach 224 K, temperatures start to
rise due to the formed vortices that cause the deformation of the thermal boundary
layer. It is noted in the figure that with an increase in x/l = 0.4 to 0.95,
temperatures increase until they reach the best improvement at x/I = 0.95 at value
358 K. Where the optimum heat transfer is achieved in an arc shape with a

staggered arrangement.
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Figure (5-17): Temperature and velocity contours for airflow along the SP-SAH

at v=1.5 m/s at I/H=1.667 for arc-shape staggered arrangements.
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5.6 Influence of p/H on the Temperature distribution

Figure (5-18) illustrates the temperature contour of the synthetic roughness
for the S-shape inline considered in this study, with parameters of Re = 5545,
angle of attack of 60°, and p/H = 1.667-6.667. The temperature of the air near
the S-shape is higher due to the higher temperature of the S-shape and the change
in the flow structure near the S-shape. Where it can be observed that the higher
the values of (p/H), the lower the temperature. It is noted in figure (b) that the
temperature distribution is better than the rest of the values of (p/H), and the

reason for this is that the more (p/H), the fewer reconnection areas the flow.
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.
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(d)
Figure (5-18): Temperature distributions contours for airflow along the SP-SAH
for the S—shape inline at v=1.5 m/s at (a) p/H=1.667, (b) p/H=3.33, (c) p/H=5,
(d) p/H=6.66.

Figure (5-19) illustrates contour of the temperature distribution of the
staggered S-shape arrangement with parameters of Reynolds number (5545),
angle of attack of 60°, and I/H = 0.835-3.33, its shows that the temperature in S-
shape is higher than the s-shape inline values because the fluid currents mix
appropriately with respect to the staggered arrangement. Where it is noted in
figures (a) and (b), the high-temperature distribution is due to the strong vortices
formed due to geometric artificial roughness and thus an increase in the heat

transfer rate.
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0.150 0.450

2
3.000e+002

Figure (5-19): Temperature distributions for airflow along the SP-SAH for the
S—shape inline at v=1.5 m/s at (a) I/H=0.835, (b) I/H=1.667, (c) I/H= 2.5, (d)
I/H=3.33.
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5.6.1 The effect of p/H on Nu and f for S-shape

Figure (5-20) illustrates the diversity between the Nusselt number and p/H
values at different arrangements. It shows an increase in the Nusselt number with
increasing p/H until p/H=3.33 then decreases. It occurs because the SAH duct on
absorber plate has lower artificial roughness at (p/H) higher relative roughness .
this leads to the reconnection points are few. and the turbulent vortices that
increase the Nusselt number will decrease with increasing pitch. Where observed
at p/H=3.33, the values of Nu=192 and 181 for both S-shape staggered and inline,

respectively.

. Hm S-shape inline
280 ® S-shape staggered

Nusselt Numb
N
|
e

0 | 1 2 3 4 5 6 7 8 9
Relative roughness Pitch (p/H)

Figure (5-20): Variation of Nu with the p/H at I/H=1.667.
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arrangements. The figure shows that as the values of (p/H) increase towards the

x-axis, the value of f decreases toward the y-axis. due to a decrease in the number

Figure (5-21) the effect of p/H on friction factor for S-shape at different

of reattachment points. For S-shape staggered and inline arrangements.
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Figure (5-21): Variation of f with the p/H at I/H=1.667

90




Chapter Five Results and Dissection

5.6.2 The effect of p/H on Nu and ffor arc-shape

The effect of the relative roughness step on the heat transfer rate is
illustrated in Fig. (5-22) using the arc-shaped artificial roughness in an embedded

arrangement. with a Reynolds number of 5545 and p/H = 1.667-6.667 parameters

The figure shows the increase in the heat transfer areas in the arc-shaped
ribs with an inline arrangement at p/H = 3.33 in figure (b) and it is noted in figures
(c & d) that there is a decrease in temperatures due to the increase in p/H. The
reason is that the fluid flow with a sudden expansion leads to a separation zone at
the rib downstream. The fluid getting back together in front of the next rib follows
this separation. Since the step is getting bigger, the periodic rotation doesn't cause
the flow to get back together, so it doesn't create a secondary vortex that speeds

up the rate of heat transfer.
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Figure (5-22): Temperature contours for airflow along the SP-SAH for the arc—
shape inline at v=1.5 m/s at (a) p/H=1.667, (b) p/H=3.33, (c) p/H=5, (d)
p/H=6.667

In Figure (5-23), related to the arc-shaped roughness in staggered order,
the effect of the relative roughness step on the heat transfer rate is illustrated using
the parameters of the Re=5545 and I/H = 0.835-3.33. The figure shows the
increase in the heat transfer areas in the arc-shaped ribs with an embedded
arrangement at I/H = 1.667 in figure (b), where it is noticed in the figures that the
staggered arrangement gives a better heat transfer rate. Although increasing the
value of I/H decreases the heat transfer value, in figure (¢ & d), a decrease in
temperature is due to the increase in I/H. The reason is that the fluid flow with a
sudden expansion leads to a separation zone at the rib downstream. This
separation is followed by the reconnection of the fluid in front of the next rib, and

because of the increase in the step, the cyclic rotation does not lead to
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reconnecting the flow and thus does not lead to the formation of a secondary

vortex that contributes to an increase in the temperature.
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Results and Dissection

Figure (5-23): Temperature contour for airflow along the SP-SAH for the arc—
shape inline at v=1.5 m/s at (a) I/H=0.835, (b) I/H=1.667, (c) I/H= 2.5, (d)
I/H=3.33
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In Figure (5-24), the contrast between the Nusselt number and p/H of the
arc-shaped roughness shown in staggered and inline order. It also explains the
further improvement of heat transfer with an constant in the Re=5545 in the
direction of flow, since boundary layer cleavage results in additional recycling
occurring near the wall region. In particular, the arc shape of the rib at p/H = 3.33
caused a larger heat transfer than the other p/Hs. This is because the fluid
reconnects in front of the next rib, and because the step increases, the cyclic
rotation does reconnect the flow, which leads to the formation of a secondary

vortex that makes the Nusselt number go up.
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Figure (5-24): Variation of Nu with the p/H at I/H=1.667 at Re=5545
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Figure (5-25) illustrates the changes in the friction factor related to the
relative roughness step (p/H) for some specific values of Re at a= 60°. The
results, therefore, expect the friction factor to reach a maximum at (p/H=1.667).
This could be because there are many reinstallation points for the free shear layer
between each pair of ribs, which causes strong disturbances at the reinstallation
point to speed up the rate of heat transfer. It is noted from the figure that the
friction factor decreases as the value of p/H and I/H constant. This happens
because of the result obtained, which lowers the obstructions obtained and,

consequently, the reconnection points are reduced.
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Figure (5-25): Variation of f with the p/H at I/H=1.667
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5.7 Heat transfer characteristics

The thermal heat transfer of the proposed shapes was measured in a SAH
S-shape and an arc shape with staggered and inline arrangements with a Nusselt

number.

Figure (5-26) illustrates the diversity in Nu number to Re number values
for inline S-type synthetic roughness for all p/H values. As it is clear that the
values of Nu increase with the increase in the values of Re compared to the
smooth plate, The figure shows that there is a sign improvement in the Nu for all
cases of S-shaped artificial roughness arrangements. Increasing speed at a higher
Re leads to an increase in heat transfer The higher values of Nu appear at p/H =
3.33 by 148. In addition, the rationale for this is because a rise in the Re increases
the Kkinetic energy of the disturbance and the rate of disturbance dissipation,
leading to an increase in the disturbance's intensity and, thus, an increase in the
Nu. As the Re grows, indications of roughness begin to show outside the laminar
sublayer because the thickness of the laminar sublayer decreases as Re increases.
Additionally, the roughness assists to the evacuation of heat by creating vortices.

Compared to a flat surface, this enhances the rate of heat transmission.
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Figure (5-26): The relationship between the Nu and the Re for S-shape in line

synthetic roughness.

Figure (5-27) the variance of Nu number to Re number values for S-
staggered artificial roughness is shown for all I/H values. It is also evident that
the Nu increases with the increase of the Re compared to the smooth plate, on all
sides of the roughness due to the force of convection. In addition, the figure shows
that there has been a big improvement in Nu number for all cases of S-shaped
synthetic roughness arrangements. When the Reynolds number reaches 9241, the
Nusselt number reaches its maximum value at I/H = 1.66 by (Nu = 162). A SAH
with an S-shaped staggered arrangement shows an increase in Nusselt number
values compared to smooth ducts. This can be explained because a higher
Reynolds number increases the level of turbulence, and the presence of roughness
contributes to heat displacement due to the generated vortices, which enhance the

rate of heat diffusion.
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Figure (5-27): Nusselt number with respect to variation Re for S-shape

staggered with different I/H.

Figure (5-28) shows the difference in the ratio of the Nusselt number to
the Reynolds number, using an arc-shaped artificial roughness in an inline and
overlapping arrangement. In Figure (a), the results of the roughness are shown in
the included order, where it is noticed that with an increase in Re, there is an
increase in the value of the Nu at p/H = 3.33, with a value of 4.67. The intensity
of turbulence increases with higher air velocity, resulting in thinner thermal
boundary layers and higher heat transfer coefficients. With an increase in Re,
fluid exchange between the two sides of the S-shape with staggered arrangement
increases. It can be seen that in this case, in figure (b), which presents extreme
values for the Nu than in the cases for the rest of the I/H parameters, it provides
the best thermal performance for the Re. The maximum Nu ratio of 4.879 for this
case is found in the Re of 9324.
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Figure (5-28): S-shape Nusselt ratio (a) Influence of p/H on Nu ratio (b)

Influence of I/H on Nu ratio

The variance in Nu obtained under a perturbed system with Re is shown in

Fig. (5-29), in the figure showing a change in Nusselt number with Re at the given
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values of relative roughness of pitch. The figure shows that arc-shaped with inline
arrangement results in significant improvement of heat transfer with similar
direction compared to smooth channel and Nu increases with an increase of Re.
At p/H = 3.33, it clearly shows an increase in heat transfer. For an arc shape with
an inline arrangement at p/H=3.33, the Nu values for the inline are 186 over the
smooth channel. This is due to the inline arrangement, which causes flow rotation

and separation, resulting in a greater rise in flow turbulence intensity.
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Figure (5-29): Nu with respect to variation Re for arc-shape inline

Figure (5-30) shows the relationship between the Nusselt number and the
Reynolds number for the roughness in an arc in an staggered pattern, and it can
be seen that the Nu increases with the rise of Re in all conditions. The heat transfer
rate increases with the rise in the Re due to the thickness of the sub-layer
decreases. The graph indicates that the Nu per I/H is greater than the Nu of a
smooth channel. Nusselt number at I/H = 1.667, which is the best improvement

of Nu = 219.
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Figure (5-30): Nusselt number with respect to variation Re for arc-shape

staggered

The Nusselt number ratio is defined as the ratio of the Nu increase of the
roughness to the Nus of the smooth channel, plotted against Re, in Figures (5-31a
and b), respectively. In Figure (a), it is shown that in all cases Nu/Nus tends to
increase slightly with the increase of Re. It is noted from the figures that the
Nu/Nus of the staggered arrangement is higher than that of the inline arc shape
shown in figure (b), and this can be attributed to the blockage of the higher flow
and the stronger eddy/vortex flow than the staggered arrangement. Which leads
to better fluid mixing between the flows Core and flows close to the wall.
Moreover, closer examination reveals that the gradient heat transfer increase at
I/H = 1.667 is higher than that at I/H = 0.835, 2.5 and 3.33. Where similar trends
are observed for inline use at p/H = 3.33. For the arc shape having I/H = 1.667
and p/H = 3.33, the increments in Nu/Nus for circulating and inline are about 7.4—
7.9 and 5.3-6.8, respectively.
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Figure (5-31): Arc shape Nusselt ratio (a) Effect of I/H on Nu ratio. (b) Effect of

p/H on Nu ratio.

5.8 Friction factor characteristic

The factor of friction (f) represents the influence of two types of artificial

roughness on the pressure drop (Ap) across an absorber plate of a SAH with (S-
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shape and arc-shape) with arrangements staggered and inline was represented and

a comparison with the smooth surface was made.

Figure (5-32) illustrated the variance of the friction factor to Reynolds
number, for different (p/H) and fixed value of angle of attack 60° for S-shaped
inline arrangements. It can be seen that the f reduction with an increases Re. The
deposition of vortices from the S-shaped artificial roughness top results in extra
energy loss, which raises the f. It is also observed that the f reduction with
increases Re due to the suppression of the viscous sublayer. When the air enters
the rough region of the SAH duct, it begins to accelerate, causing the pressure
drop to rise. The pressure drop is more profound for the higher value of the Re.

At p/H of 1.667, the maximum value of f is observed.
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Figure (5-32): f with respect to variation Re for S-shape inline arrangement.
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Figure (5-33) show that the f variance to the Re for the S-shape staggered
arrangement synthetic roughness for all I/H values. For fixed value of (e/H=
0.271), the angle of attack is 60°. It can be seen that the f decreases with an
increasing Re. The shedding of the vortices originating from the top of the circular
cut rib causes additional energy loss, which leads to an increase in the f. Itis also
observed that the f decreases with the increase of the Re due to the fracture of the
viscous sub-layer. For fixed value of (e/H), the values of the f decrease as (I/H)
increases. It occurs because the SAH duct has lower (I/H) which results in lower

flow resistance in the duct.
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Figure (5-33): f with respect to variation Re for S-shape staggered arrangement.
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Figure (5-34 a & b) shows the variance of the friction factor ratio (f / f s)
to the Re for different (p/H) and for a constant (e/H) value of 0.271. It shown that
the mean ratio of friction factor increases with a decreasing of (p/H) for all cases.
It is also observed that the (f / f s) decreases with increasing Re for the range of
parameters examined. The reinforcement in the (f / f s) was found to be 3.6 times
that of the smooth channel, corresponding to p/H = 1.667, as shown in figure (a).
For figure (b), it was found that the maximum enhancement in the average f was
3.7 times that of the smooth channel, corresponding to the I/H = 0.8335 at Re=

3327 for the parameter set examined.

Figure (5-35) illustrates the variance of the f to the Re. The average f
decreases with an increase in Re. The figure also depicts the effects of p/H on f,
for fixed angle of attack 60° for arc-shaped inline arrangements. Furthermore,
higher p/H cause a decrease in the f at the farthest Re of 9241. According to the
plotted values, it found the maximum f at p/H=1.667 of value 3.9. It is accepted
that f decreases with an increase in Re due to the suppression of the viscous sub-

layer for a fully developed turbulent flow.
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Figure (5-34 a & b): (a) Influence of p/H on (f / f s) ratio. (b) Influence of I/H
on (f/ f s) foe S-shaped.
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Figure (5-35): f with respect to variation Re for arc-shape inline arrangement.

Figure (5-36) shows the plot of the mean f versus Re for different values
of I/H and for constant angle of attack 60°and e/H with a value of 0.271 for the
arc-shaped staggered arrangements. Moreover, it has been discovered that the f
decreases with an increasing of I/H. The f ratio enhancement with a maximum of
4.1 is found for I/H = 0.8335 and at Re (3323). The number of discontinuities in
the flow path over the absorber plate decreases as the I/H increases for a given
value of the I/H. It happens because the SAH duct has lower I/H, which results in

lower flow resistance in the duct.
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Figure (5-36): f with respect to variation Re for arc-shape staggered arrangement.

Figure (5-37 a & b) shows the plot of the friction factor ratio versus Re for
different values of p/H and I/H for e/H with a fixed value of e/H= 0.271 and for
a 60° angle of attack, constant values for the arc-shaped inline and staggered
arrangements. Figure shown that the f ratio decreases with an increasing of p/H,
shown in figure (a), and I/H, shown in figure (b). The f ratio enhancement with a
maximum of 3.9 is found for I/H = 0.8335 and 3.7 is found for p/H = 1.667 at
Reynolds No. 3323. The number of discontinuities in the flow path over the
absorber plate decreases as the p/H increases for a given value of the e/H. It
happens because the SAH channel has lower p/H, which results in lower flow

resistance in the duct.
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Figure (5-37 a & b): (a) Effect of p/H on friction factor ratio. (b) Effect of I/H

on friction factor ratio
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5.9 Thermal performance factor (TPF)

The thermal performance factor it is the ratio of heat transfer and friction
factor relative to the smooth case. It also helps to know the optimum arrangement
and dimensions of the synthetic roughness, which will correspond to the
maximum improvement in heat transfer and minimum frictional force. The
change in the thermal enhancement factor with Re is due to the use of the

synthetic roughness in arc-shape and S-shape on the absorbent plate.

Figure (5-38) shows the variation of the thermal performance factor with
the Re for different values of the (p/H) and for the fixed value of the (I/H=1.667)
for the 60° angle of attack fixed values for S-shaped inline. Determine the TPF
according to the measured Nu and f values data for both the artificial roughness
and the flat plate channel with the same pumping power as defined in the equation
(4.11). It was found that the values of thermal performance factor vary from 1.89
to 2.81 for the range of parameters examined. It is noted that the thermal
performance factor of the p/H = 3.33 is TPF=2.81 enhanced for the range of

parameters examined at the Re of 9241.

Figure (5-39) shows the differences in TPF as a function of Re for all I/H
studied. It is noted that the gradient arrangement provides a high f and a high Nu,
and thus the values of the thermal performance factor are better. The TPF range
of the S-shaped roughness staggered arrangement of the solar air heater is 2.1-
3.13. The highest TPF is observed with the S-staggered roughness at I/H = 1.667
of value 3.13, At the Reynolds number of 9241, is the best improved for the
variety of variables investigated.
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Figure (5-38) TPF variation with Re for different p/H at I/H=1.667 for S-

shape inline
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Figure (5-39): TPF variation with Re for different I/H at p/H=3.33 for S-shape
staggered.
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The variation of the thermal performance factor with the Reynolds number
Is shown in Figure (5-40) considering the shape of the inline arc arrangements on
the absorber plate alone. A similar pattern of increase in TPF is seen with the Re
In the case of an inline rib arrangement. As it was drawn in the figure, the use of
arc shape roughness increases heat transfer rate with less friction factor penalty.
The improvement using the vortex generator in the arc-shape inline arrangement
was found to be 3.38.
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Figure (5-40): TPF variation with Re for different p/H at I/H=1.667 for arc-
shape inline.
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Figure (5-41) illustrates the relationship between the thermal performance
factor and Reynolds number for arc-shaped staggered arrangements. The figure
depicts the thermal performance factor of a various relative roughness pitch for
Re ranging (3000 - 10000), the use of additional roughness in the staggered arc
shape of the heat transfer rate while minimizing the friction factor. Maximum
overall performance gain is achieved with the arc-shaped staggered array at Re =
9241 and a TPF value of 3.67.
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Figure (5-41): TPF variation with Re for different I/H at p/H=3.33 for arc-shape
staggered.
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5.10 Collector efficiency n

Figure (5-42) shows the contrast between efficiency and Reynolds number,
where the figure shows the effect of artificial roughness in arc shapes and S in the
arrangement of the inline and staggered, where the maximum capacity of
efficiency appears at I/H = 1.66 for the arc-shaped staggered arrangement, where
the maximum efficiency is found by n =74.5%. Where the improvement in heat
transfer is higher than the increase in the factor of intercession and thus leads to

increased efficiency.
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Figure (5-42): The efficiency of SAH variation with Re for I/H=1.667 for S and
Arc shape inline and p/H=3.33 for S and Arc-shape staggered.
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CHAPTER SIX

6.1 Conclusion

The experimental and numerical study of the thermal performance of a
SP-SAH with and in the presence of artificial roughness in the form of an arc and
S-shape provides the basis for the conclusion of the present work. Based on the
average Nusselt number (Nu) and average friction factor (f) parameters, the ideal
artificial roughness shape was determined using the ANSYS FLUENT version
17 Academics platform. From this research, the following conclusions may be

drawn:

1. SAH is improve by creating a rough surface on the absorbent plate in the

shape of a staggered and inline S and an arc.

2. The average Nusselt number tends to increase as the Reynolds number
increases in all cases. The average Nusselt number tends to decrease as the
relative roughness pitch increases for a fixed value of relative roughness
height and it also tends to increase as the relative roughness height
increases for a fixed value of relative roughness pitch.

3. The RNG k-e& turbulence model accurately predicted experimental
outcomes, providing confidence in the CFD analysis predictions made in

this study. Validation of the k-e perturbed RNG model for a smooth duct.

4. Due to the creation of vortices, the Nusselt number (Nuyand the friction
factor (f) increase towards the leading edge of the artificial roughness and

drop near the trailing edge due to fluid reconnection.

5. Arc staggered configuration has generated a maximum Nusselt number
ratio (Nu/Nus) of 7.65 at Re = 9241 and I/H = 1.667. The S-shaped lining
has been seen to have a minimum (Nu/Nus) of 3.2 at p/H 1.667 and
Re=3327.
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6. The highest value that can be obtained for (f/fs) at Re=9241 is 4.94 and
lowest value is obtained by 3.2 at [/H =1.667 for arc shape staggered and
[/H =2.5 for S-shape staggered, respectively.

7. When examining all cases for all arc and S-shapes and the effect of the
pitch on thermal enhancement, it was determined that p/H=3.33 yields the

best results.

8. The greatest value of TPF was obtained at the staggered arc shape of 3.67
at Re=9241 at I/H=1.667.

9. the maximum capacity of efficiency appears at I/H = 1.66 for the arc-
shaped staggered arrangement, where the maximum efficiency is found by
n =74.5%.
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6.2 Recommendations

Several aspects of the Solar Air Heater with artificial roughness could benefit

from additional research.

1.  Study the effect of using double glass on the enhancement of heat transfer

across solar heater.

2. In the future study, can integrating a solar air heater with artificial

roughness with thermal storage and analyzing the results.

3. Using the same apparatus and parameter to investigation different shapes

of artificial roughness with different arrangement.

4. For further studies on improving the thermal performance of solar air
heaters, the effects of the combination of these two considered S and Arc
shape here as well as the creating holes in these shapes to reduce pressure
drop on heat-transfer enhancement can be studied experimentally and

numerically.
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Appendices

Appendix (A): Calibration of solar power meter

In this study, a solar power meter was used to measure global solar radiation. This
device is used because it is easy to use and has acceptable accuracy. This device
can be calibrated, as the Weather Technical College of Najaf, Irag, to investigate

the calibration of the solar power meter, relied on it. As in figure A.1.

y = 1.0029x - 5.4425
1200 +
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Figure A.1. Solar power meter calibration.
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Appendix (B): Calibration of Anemometer

All procedures employ an anemometer to measure wind speed. It is a simple-to-
use instrument with an adequate level of precision. The Meteorological Station
in Al-Diwaniyah calibrated the anemometer and compared the wind speed

measured by the station and the anemometer, with a range of (0.1 to 35) m/s and

an accuracy of 5%. As in figure B.1.

y =0.9947x - 0.0979
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Figure B.1 Anemometer calibration
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Appendix (C): Calibration of Thermocouples
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Figure C.1 Calibration of thermocouples
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Ice Point Ambient Steam points
Channel no. temperature
Thermocouples (0.0°C) (38°C) (100°C)
T1 0.3 38.1 99.2
T2 0.2 38.4 98.6
T3 0.4 37.4 98.7
T4 0.6 37.8 99.1
T5 -0.1 37.9 99.6
T6 -0.2 38.1 99.4
T7 0.1 38.2 99.7
T8 0.3 38.4 98.7
T9 0.5 38.6 98.4
T10 0.4 38.1 99.1
T11 0.2 37.8 99.6
T12 0.3 37.4 99.7
T13 0.2 37.6 99.6
T14 0.4 37.9 98.7
T15 0.6 38.2 97.9
T16 -0.3 38.21 97.8
T17 -0.1 38.0 98.7
T18 -0.4 38.0 99.8
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Appendix (D): Uncertainty

Verification of Uncertainty the following relationship can be used to
indicate a possible error value in the measurement tools: A related formula
between the dependent and independent variables can be used to figure out the

resultant uncertainty value [55].

Vo= |35 (2 vy) 0.1)
R="f(Z,Z,,...,Z7y) (D.2)
Where:
Yr: Uncertainty regarding the results
71,25, ....,Z,: Independent factors
Y, Y, e , Y,: Associated variables.

In the following sections, the general formula to be employed to assess the
uncertainty of the experimentally obtained performance analysis in the current
study. (D.1).

Area of the absorber plate (Ap)

The Area of the absorber plate (Ap) was obtained by eq. follow and rewritten

below:
Ap=W XL (D.3)

The uncertainty in Ap is attributable to mistakes in W width and L length,
according to Eq. (C.1). However, the following broad statement could be create:

SAp = [(f;‘% aL)2 + (& 5W)2]O'5 (D.4)
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§Ap = [(W 8L)? + (L sW)?]°5 (D.5)

-l e T ©9
il GRICONN ©7
ol IR ©3

Hvydraulic diameter (Dn)

The Hydraulic diameter (D) was obtained by eq.(4.7) follow and rewritten

below:
_ 2ab
Dh " a+b (D.9)
8D 2 5D 219
5D, = [(Q 5H) + (2 sw) ] (D.10)

8D N2 (8D o 217
5D [(E‘SH) +(5w W) ]

D 2(W H)(W+H)~1

(D.11)

5Dp _ [(1.652%0.05)%+(1.652%0.05)2]%>
D 2(300%30)(300+30)"1

= 40.00214 or 0.214% (D.12)

Mass flow rate (m)

The mass flow rate () was compute using eq. (4.12) follow and rewritten below:

= pVAp (D.13)
sm 5p\2 SV\2 sap\21°°
o [(7) +(7) + (5 ] (D.14)
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ém

=% = [(0.0083)? + (0.0186)? + (0.000849)2]°5 = +0.0004155  (D.15)

Useful heat gain (Q,,)

The Useful heat gain (Qu) was compute using eq. (4.2) follow and rewrite

below:

Qu,air = mcp,air (Tout - Tin) (D- 16)
- 0.5

SQuarr _ s\ 2 6Cp,air 2 SAT 2

Qu,air B ( m ) + ( Cp,air ) + (AT ) (D-l7)

S%uarr _ [ 0.000415)% + (=) + (22))]" = 0.05001 0r 5% (D.18

Quair _( ' )+ (1006) + (5_) - or 5% (D.18)

Hear transfer coefficients (h)

The Hear transfer coefficients (h) was compute using eg. (4.6) follow and rewrite

below:
- mcz_g;;i?;:;;"in) (D.19)
== :(0.5)2 +(0.000849)2 + (O'TZS)Z]O'5 = 0.50249 0r 5.02%  (D.21)

Nusselt Number (Nu)

The Nusselt number (Nu) was compute using eq. (4.8) follow and rewrite below:

Ny = hkﬂ (D.22)
o _ ()7 4 (2)° 4 (2] 0.23)

D-3



SNu (0.00001

270.5
o __ 2 2 —
X = 1(0.50249)% + (0.00214)? + 0_02659)] = 0.50249 or 5.02%

(D.24)

Revynolds number (Re)

The Reynolds number (Re) was compute using eq. (4.9) follow and rewrite

below:

Re = P"#Dh (D.25)
SRe _ [ 8p)\? 5Dp\ 2 51\ 2 sun21%°

=)+ G + () +(3) ] (D.26)
8Re _ [(0.0083)2 + (0.00214)% + (0.0186)? + (0'001)2 "

Re | ' ' 1.81 B

0.0204 or 2.04% (D.27)

Friction factor (f)

The friction factor (f) was compute using eq. (4.10) follow and rewrite below:

f= ﬁﬁTP (D.28)
2o () (&) + (&) + ()] 029
‘Sf—f = [(0.0083)2 + (0.00214) + (2 x 0.0186) + (ﬁ)2 + (5"10;’61)2]05 _
0.0381 or 3.81% (D.30)
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