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ABSTRACT

Recent developments in low-cost sensor technology have made Wireless Sensor Net-

works (WSNs) more widely applicable. One potential application of WSN is target

detection and tracking. Each sensor node in a WSN runs on a battery, which is a lim-

ited and non-renewable source of energy. As a result, enhancing energy efficiency is

essential because it affects the network’s lifespan. This thesis presents models to re-

duce the consumed energy and extend the network lifetime by utilizing a Compressed

Sensing (CS) approach for multi-target detection and tracking. The proposed algorithm

fuse the information of all targets and sent them in one pack to the Base Station (BS)

to achieve low energy consumption per sensor and reduce the number of bits sent as

well as transmission processes over the network, and this led to extends the lifetime

of the limited-energy sensors in the WSN. In practical sensors, the sensor readings are

reported for targets within the detection range, and targets outside this range are not

detected. So, We study the effect of the practical sensors on the detection process using

CS. In tracking, another solution to reduce energy consumption for multi-target track-

ing. The K-Nearest Neighbors (KNN) algorithm is utilized to select a subset of the

sensors based on the target’s location to save energy and reduction of the search area for

the sensors to be activated for future predictions. A Kalman Filter (KF) is used to predict

the trajectories of the moving targets. The results for multi-target detection, obtained via

Monte Carlo simulations, show that the proposed approach presents substantial energy

reduction without compromising target detection accuracy for a relatively large number

of targets, and the practical proposed approach performs better than the ideal case. The

results for multi-target tracking demonstrate that our tracking scheme can track multiple

targets effectively, reduces the search area for future prediction, and reduce the energy

consumed compared with complex algorithms from earlier studies.
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CHAPTER 1

GENERAL INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

Recent important developments in computer networking, microelectronics, and wire-

less communications have made it possible to create large networks called WSN. WSN

is the most widely used and common field of wireless technology [1].

WSN consists of many small sensors node, low-cost devices that serve specific tasks,

and a fusion center or BS [2]. The sensor node may be static or mobile, depending on

the application requirements [3]. The sensors node are randomly or deterministically

deployed in a field of interest [4]. When the environment of interest is inaccessible or

located in hostile territory, sensor nodes may be dropped from the aircraft or by other

methods, resulting in a random placement [5].

WSNs have attracted the attention of researchers over the last few years due to their

wide use in different applications, such as military, civil, intelligent cities, and indus-

try control [6, 7]. One potential application of WSN is remotely monitoring patient

physiological data [8]. Furthermore, WSNs have environmental applications like water

monitoring, air monitoring, and emergency alerting [9].

Target detection is a vital service of WSN that has security uses in homes to detect



infiltration, enemies in battle, and monitor animals’ movement [10]. In addition, target

detection is considered the first step to locating and tracking a mobile target, The goal

of target tracking is to secure the tracks of targets moving over the field of observation

continuously with the help of field measurements from sensor nodes. Tracking a mo-

bile target is attractive to some applications and is necessary to continue tracking the

detected target over a large area, such as wildfires, toxic gases, oil spills [11], battlefield

information monitoring, and traffic management [12].

1.2 Localization Techniques

The majority of localization techniques used in WSN nowadays can be divided into

two groups: range-free techniques and range-based techniques [13].

Algorithms in range-free approaches do not require precise knowledge of the angle

or distance between the target and sensor nodes. By using connection data or shared

multi-hop routing information, range-free algorithms can obtain the distances between

the unknown target and sensor nodes inferred indirectly. The binary sensor is used

with range-free algorithms, this sensor sends 1 if the target is within its sensing range.

Range-free based localization has several benefits, but its main advantages are its low

hardware cost and ease of computation. These advantages make them easy to integrate

into WSN. Even so, because of their poor location accuracy, their usage is still limited

[14].

With range-based positioning systems, the target is located using accurate distance

information. Multilateration or Least Squares (LS) can be applied to determine the po-

sition when distance estimations are known. Several measurements, including Time

Of Arrival (TOA), Time Difference Of Arrival (TDOA), Angle Of Arrival( AOA), and
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Received Signal Strengths( RSS), have been suggested in the literature to determine dis-

tance [15]. In real-world applications, the TOA and TDOA methods are more precise

than the RSS method [16]. TOA-based localization is actually a range-based localiza-

tion problem. TOA has calculated both ways or round trip. The measured distance

between the sensor and the target is obtained by multiplying the computed TOA by a

specified propagation speed.

1.3 Problem Statement

1. Multiple target detection and tracking via WSN.

2. Effect of using the practical sensor node in the detection process.

3. A sensor management in multi-target tracking.

4. Limited energy batteries.

1.4 Literature Review

Many researchers have focused on multi-target detection and tracking due to their

wide use in different applications. This section presents the literature related to the

methods of multi-target detection and tracking. The review starts with target detection,

and then target tracking.

1.4.1 Multi-Target Detection

Several localization algorithms have been proposed in the literature for WSN appli-

cations which include the compressed sensing (CS) method [17–21], and linear estima-

tion algorithm [22, 23].
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1.4.1.1 Compressed Sensing Method

Feng et al. [17] in 2009: The proposed algorithm uses RSS to find the location of

targets. They consider k targets which can appear in the isotropic area with unknown

locations. The area is divided into discrete N grid points. The M sensors take RSS mea-

surements from the targets to determine the location of these targets accurately, using a

small number of RSS measurements. To apply CS theory, appropriate data processing

is necessary. Pre-processing was employed to create the incoherence required by the CS

theory, while post-processing was used to make up for the spatial discretization brought

on by the grid assumption. The simulation results show that the proposed CS method

outperforms the kernel method, K Nearest Neighbours, and histogram methods, which

use RSS for wireless node localization.

Liu et al. [18] in 2014: In this study, a range-free algorithm (binary sensor) was pro-

posed using the theory of Multiple Target Localization Compressive Sensing (MTLCS).

The sensor network monitoring area is divided into many small networks. Msensor

nodes with location information are published randomly within some networks. The

author assumes that there is at most one node for each grid. K targets are dispersed

in different grids, and there is one target per network. Furthermore, the location of the

real target is assumed as the corresponding grid center. In this approach, the sensors

send the measurements vector and sensing matrix to CH, Which increases the energy

consumed by the sensors. Simulation results show that MTLCS has a localization error

of less without physical distance measurement. With an increase in targets, the local-

ization error increases. The localization accuracy will increase as the number of sensor

nodes increases.
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Xin et al. [19] in 2015: In this research, another CS-based approach for multiple

target detection. The researcher solves two problems. For the first problem, the authors

utilized an iterative activation algorithm (IA) that aims to activate the sensors of better

readings with greater probabilities compared to systems that activate all sensors equally.

Choosing a section of the sensor schedule allows continuous monitoring of all targets,

and saves energy and bandwidth resources. Each activated sensor records the RSS val-

ues of the signals received from targets and sends the information to the CH where a

compressive sampling algorithm is conducted to recover the number and locations of

targets. For the second problem, a sequential recovery algorithm IA-LSCS is proposed,

Which exploits all the previous information to improve the accuracy of the localization

algorithm. Extensive simulations show that the IA-LSCS algorithms are efficient and

the localization accuracy of the IA-LSCS algorithm outperforms DV-hop is a range-free

approach and Kernel-based is a range-based approach.

Qian et al. [20] in 2015: The researchers implemented two stages: an offline stage

and an online stage for multiple target detection and power estimation in WSN. While

this is not the first work on applying compressed sensing (CS) to detection targets, It

is the first to achieve localization without prior knowledge of the transmitting powers

of targets. At the offline stage, the sensing matrix is generated by collecting RSS from

radio frequency emitters, avoiding the drawbacks of the radio propagation model. Then,

at the online stage, a small number of RSS measurements are taken to accurately retrieve

a sparse vector. The M RF emitters in the offline stage deployed and M sensors in

the online stage based on the same deployment scheme, which is simply chosen as

random propagation. Their simulation results show that the performance of the proposed

approach achieves a high level of positioning and energy estimation accuracy and shows

strong performance against measurement noise.
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Li et al. [21] in 2020: In this paper, a multiple-target localization algorithm named

CS-based two-stage multi-target localization algorithm combined with Voronoi scheme

(VD-TMTL) is used. Voronoi Diagram-based Greedy Matching Pursuit method is used

to search for candidate networks in local sub-regions. In the fine localization phase,

the candidate grids are refined into small grids according to the Least Grid Side Length

theory to localize the elements to obtain a higher localization accuracy. Simulations

present that the VD-TMTL algorithm has good localization accuracy and at the same

time it reduces the response time significantly.

In [17–19, 21], the authors assumed that the number of active sensors is usually a

function of the number of targets which is unknown in advance. In [17–19], the authors

also supposed that both targets and sensor nodes are located on grid points, which is not

a practically valid assumption.

In all the CS-based approaches [17–21], some sensors are selected to perform the

sensing task of the targets, which reduces the number of active sensors. However, this

sensor selection process requires centralized coordination, which increases the con-

sumed power by the sensors. Furthermore, reducing the number of active sensors does

not imply that the lifetime of the WSN increases because there is no reduction in the

number of bits per target in the active sensors.

1.4.1.2 Linear Estimation Algorithm

Kang et al. [22] in 2021: The authors presented a hybrid single-target localiza-

tion algorithm-based multi-target localization scheme that is computationally effective.

Based on combinations of measurements in a few chosen anchor nodes, a set of target

candidates were estimated, and ghost targets were eliminated using the Mean Square

6



Error (MSE) criterion. The proposed algorithm grouped the measurement sets in each

sensor node with respect to the best M target candidates after obtaining them. The tar-

get position was therefore good by using a single-target localization technique, on the

clustered measurement sets in every node. Simulation results verify the proposed algo-

rithm’s robust performance, which derives the single-target algorithm’s performance in

the presence of extreme noise. In conclusion, the primary contribution of this work is

the development of a computationally effective localization method for a set of multiple

targets based on RSS and AOA data that are not associated with the targets from which

they were collected.

Luomala and Hakala [23] in 2022: Used a traditional methods to multi-target de-

tection. A multilateration approach is used, which depends on the Time Of Arrival(

TOA) measurements for target detection. The sensors in this approach send the infor-

mation of each target individually. This approach provides a rigorous estimate of target

locations, regardless of their number and locations. However, the number of transmis-

sion processes for detecting multiple targets can dramatically affect the lifetime of the

WSN.

1.4.2 Multi-Target Tracking

Yeow et al. [24] in 2007: In this study, the Hierarchical Multiple Target Tracking

(HMTT) distributed target tracking algorithm was used, which can save more energy

than other techniques with the same tracking accuracy. The authors employed the Hier-

archical Markov Decision Process (HMDP) for the target-tracking (HMTT) algorithm.

This algorithm saves energy by determining the optimal sleep time for the sensors, de-

creasing the rate of sensing (temporal management) while maintaining a respectable

7



tracking accuracy through trajectory prediction (spatial management) of multiple tar-

gets. However, HMTT is not accurate, because it is interested in where locations targets

are, focused on regions of the target rather than exact Cartesian coordinates. Simulation

results showed the effectiveness of HMTT in energy conservation and tracking accuracy.

Fuemmeler and Veeravalli [25] in 2010: Suggest that the sensors be set into sleep

mode with a timer that controls the sleep period, to conserve energy. It is expected that a

sensor asleep cannot send the information or sense. Therefore, the sensor does not spend

energy and remains retained. Based on all the data the sensor has access to, the length

of sleep must be decided before the sensor goes to sleep. However, there is a trade-off

between energy savings and tracking problems, that come from the sleeping activities

at the sensors since having sleeping sensors in the network could cause tracking errors.

The results indicate that the design and effectiveness of sleeping regimes that maximize

this trade-off are studied, and the data about the object’s location can greatly enhance

the trade-off between energy use and tracking errors.

Fu et al. [12] in 2012: To balance the tracking performance and costs subject to

limited network resources in terms of energy, communication bandwidth, and sensing

range, the authors employed decentralized sensor management algorithms to perform

sensor selection, where each sensor decides independently whether to participate in

data collection and how to contribute to track fusion. The power-saving strategy in this

paper is to put some of the sensors into sleep mode using a two-step approach. So

that most of the sensors only need to work in the simple sensor module by measuring

Signal to Noise Ratio (SNR) while only a small group of properly selected sensors need

to perform active sensing by activating their TOA/DOA measurement module. This

approach dramatically reduces the energy consumption of the active sensor.

8



Mohajerzadeh et al. [26] in 2018: In this paper, a reliable method for tracking

mobile targets using Directional Sensor Networks (DSNs). Directional sensor networks

(DSNs) are a subclass of WSNs with some distinctive advantages. First, the coverage

for an incoming detection is achieved by choosing a small subset of borderline sensor

nodes. Second, the author suggests an effective method for determining the bare min-

imum number of interior sensor nodes that should be active, which works for both de-

terministic ordered and random node deployments. By doing this, the network lifetime

can be increased by using a lot fewer sensor nodes. Third, used an engineering method

to collect data with two active sensors simultaneously. Finally, the target location is

estimated using an extended Kalman filter (EKF). The results show the effectiveness of

the proposed scheme in terms of energy efficiency, coverage, and tracking accuracy.

Parvin and Vasanthanayaki [27] in 2019: In this research work, a distributed en-

ergy optimization method for target tracking is implemented using Particle Swarm Opti-

mization. Effective target tracking based on speed, acceleration, and angle of movement

is performed by selecting the shortest energy-saving path. The proposed system depends

on the best path selection leads to better performance. From the simulation, it can be

seen that the proposed system indicates slightly better results than the previous systems.

Zou et al. [28] in 2022: Propose a new resource allocation scheme for perform-

ing accurate node scheduling and accurate tracking in networks for mobile multi-target

tracking. The dynamic tracking problem has been formulated as an infinite horizon

Markov Decision Process (MDP), taking into account the variety of different target

nodes and the various tracking capabilities of different sensor nodes. Moreover, the

multi-region tracking and scheduling strategy is treated as an important component in

reducing the size of the state space with low computational complexity. The proposed

9



system can obviously enhance network performance and reduce tracking delay as shown

by simulation experiments. Moreover, sink nodes can reduce regular energy consump-

tion through scheduling policy. Finally, the time complexity is analyzed to promote

more work smoothly.

Lee et al. [29] in 2023: This study combines the Received Signal Strength Index

(RSSI) channel model with the Particle Swarm Optimization (PSO) technique to locate

and track indoor targets. For target localization and tracking, the effectiveness of eight

different method combinations with random or regular points, fixed or adaptive weights,

and the Region Segmentation Method (RSM) proposed in this paper is examined for the

number of particles in the PSO algorithm with 12, 24, 52, 72, and 100. The simulation

results show that the employment of more algorithms improves the accuracy and stabil-

ity of target location estimate, but increases target location estimation time. As a result,

this study presents the RSM. The simulation results suggest that the proposed RSM

approach may increase positioning and tracking speed while reducing the number of

particles employed in the PSO algorithm, all without compromising target localization

and tracking accuracy.

1.5 Objectives

The main contributions of this work can be stated as follows.

1. Presents a reliable target detection and tracking technique based on the CS the-

ory using the TOA measurements. The proposed approach can detect and track

multiple targets simultaneously.

2. Suggests centralized sensor node management algorithm.

10



3. Extend the lifetime of the sensors inside the network.

1.6 Organization of Thesis

• Chapter two: This chapter provides a brief description of WSN in terms of net-

work models and mathematical models as well as background information on the

algorithms used in the work. Those techniques include a multilateration approach,

Compressed Sensing theory (CS), K- Nearest Neighbors algorithm (KNN), and

Kalman Filter (KF).

• Chapter three: It covers the proposed model for multi-target detection, the prac-

tical approach for the proposed model, the energy model, sensor management,

and multi-target tracking.

• Chapter four:It covers simulation results for multi-target detection and tracking

to compare the results of the proposed model (CS) with the traditional approach

(multilateration) illustrated in Chapter Two.

• Chapter five: This chapter presents the proposed model’s summary conclusions

and offers suggestions for future work.

11



CHAPTER 2

THEORETICAL BACKGROUND

This chapter presents an overview of WSN, in addition to the required background infor-

mation on the algorithms used in the work. Those techniques include a multilateration

approach, Compressed Sensing theory (CS), K- Nearest Neighbors algorithm (KNN),

and Kalman Filter (KF).

2.1 Overview of WSN

WSNs are formed of a vast number of cheap, tiny active sensor nodes that are typi-

cally dispersed at random in a two-dimensional field [30]. Each sensor node is able to

sense, process, and send data to the BS.

Target detection and tracking is a crucial WSN service with security applications

such as identifying intruders, enemies in battle, and tracking the movement of animals

[31]. The target tracking objective is to continually secure the tracks of targets moving

over the field of sight using field measurements from sensor nodes. Target detection is

also regarded as the first step in detecting and tracking a mobile target. Certain appli-

cations, such as those for monitoring wildfires, hazardous gases, oil spills, and traffic

management need tracking a movable target in order to continue tracking the identified

target across a vast area [11].

12



Based on the working principle of the sensor, they are classified into the follow-

ing categories: active and passive sensors. An active sensor generates the signals and

emitted them to the monitoring field, and then receives the signal that is emitted after

reflecting from the target. The passive sensor measures the strength of the signal emitted

by the physical target. Different from the active sensors, the passive does not generate

the signals [32].

The sensor consists of a processor, a sensing device, and a radio or communication

unit that is used to send information collected by the sensors to a central unit called the

BS [33]. BS processes the data received from the sensors in the network before handing

them over to the receiver. BS has the higher processing power and energy than all other

sensors in its service area [34].

Power is a compulsory aspect of nearly all operations at WSN. In general, the power

consumption of sensor nodes is noted in three places: (a) power consumption by the

sensing unit, (b) power consumption by the processing unit, and (c) power consumption

by the communication unit [5]. The power consumption in sending data (communica-

tion unit) is higher than in sensing and computation. It is observed that 80% of the sensor

node’s power is consumed by the communication unit [35]. The energy consumed by

ith sensor node Ei
TX for transmitting a packet of n − bit of data over a communica-

tion channel to the BS can be described using the free-space energy model as follows

[34, 36]:

Ei
TX = (α + β × dµi,BS)× n (2.1)

where α and β are constants related to the transmission and reception circuity, di,BS is

the distance between the ith sensor and BS, µ ∈ (2, 6) is the free-space exponent [36].
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The sensors are limited energy devices. The batteries inside sensor nodes are dif-

ficult to replace or recharge due to the harsh environment in which sensors are usually

deployed [37]. When any sensor consumes its battery resources (i.e., dies out), it leads

to a gap in the network, and therefore the WSN cannot detect and track all targets ap-

pearing in the monitoring field. One criterion used to measure the energy efficiency of

WSNs is the lifetime. The lifetime of the WSN is defined as the number of rounds the

sensors send information to a fusion center until the first sensor dies [34, 38].

Typical measurements for target detection include the TOA, TDOA, AOA, and RSS

[15]. TOA and TDOA methods are more accurate than the RSS method in practice

[16]. Moreover, RSS/AOA measurements are calculated based on the signal that the

targets generate, the RSS/AOA measurements cannot be determined by their original

targets in non-cooperative situations such as military applications. TOA is utilized to

target detection, where all active sensors emit a signal with the same power in the mon-

itoring field, and measure the two-way travel time to detect the presence and number

of targets. TOA-based localization techniques treat the location-finding problem as a

distance estimation problem based on the reflected signal from the targets.

For Multiple Target Tracking (MTT), due to the narrow bandwidth, limitation en-

ergy, and sensing range constraint of the sensor nodes, it is impossible to track the

moving target by the same subset of static sensors [12]. Also, it is not helpful to use all

the sensors in the tracking, since the sensor that is far away from the targets consumes

power, and its measurement is inaccurate. From the points mentioned above, the sen-

sor management problem appeared, which aims to assign the sensors that surround the

targets (nearest neighbor) to carry out the tracking process for a moving target [12].

14



The three common divisions of target tracking are target detection, target localiza-

tion, and prediction of the targets’ trajectories [39].

2.2 Multilateration Approach

When monitoring the field of dimensions (R × R). The targets can appear at any

location in the monitoring field. The BS is located in the center of the monitoring

field. The static sensors node is distributed randomly in the monitoring field. The

locations of sensor nodes are known and obtained via GPS or by using self-localization

algorithms [40]. Assume that the sensors are i = 1, 2, . . . ,M , where si = (xi, yi) is

the coordinates of the sensor’s node location. When a sensor node senses the relative

distances between itself and the targets inside the monitoring field. Given the distances

and locations of sensor nodes, the target can be localized and detected. In the traditional

approach [23], the authors utilized a multilateration approach for target detection. It is

an approach to determining locations that are widely used in WSNs. When m targets

appear simultaneously in the monitoring field, each sensor node measures its relative

distances to all of the m targets with unknown location (xa, ya) by using TOA and

reports this information to the BS. In this approach, the sensors send the information of

each target individually [23]:



d2
1

d2
2

...

d2
M


=



(x1 − xa)
2 + (y1 − ya)

2

(x2 − xa)
2 + (y1 − ya)

2

...

(xM − xa)
2 + (yM − ya)

2


(2.2)

To determine the target’s location in BS, the nonlinear distance equation is converted to

a linear system. The following system of linear equations is created when the terms are
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rearranged [23]:

Ax = b (2.3)

where A ∈ RM−1 is the coefficients matrix (It is calculated using sensors coordinates)

and can be defined as follows:

A =



2(xM − x1) 2(yM − y1)

2(xM − x2) 2(yM − y2)

...
...

2(xM − xM−1) 2(yM − yM−1)


(2.4)

,

and the distance vector b ∈ RM−1 is expressed as follows:

b =



d21 − d2M − x2
1 − y21 + x2

M + y2M

d22 − d2M − x2
2 − y22 + x2

M + y2M

...

d2M−1 − d2M − x2
M−1 − y2M−1 + x2

M + y2M


(2.5)

The final two-dimensional location of the target is estimated as follows:

x = (ATA)−1ATb (2.6)

The above approach is repeated for each target.

The multilateration approach provides a rigorous estimate of target locations, re-
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gardless of their number and locations. However, the amount of data transmission for

detecting multiple targets can dramatically affect the lifetime of the WSN, which is

considered one of the main issues in WSN. In the following subsection, we propose an

approach that can extend the lifetime of WSN, without affecting detection quality. The

proposed approach depends heavily on CS theory.

2.3 Compressed Sensing (CS) Theory

CS has gained the attention of researchers in recent years and has been employed

in many fields such as image processing, array processing, military target detection,

Multiple-Input Multiple-Output (MIMO) radar systems for target detection and direc-

tion of arrival estimation, and medical imaging [41–43]. Just lately, the CS theory has

been applied to target detection using specific data. CS can reconstruct a sparse signal

using a small number of samples as compared to Nyquist sampling under specific con-

ditions like Mutual Coherence, Restricted Isometry Property (RIP), Nullspace Property

(NSP), and Range Space Property (RSP) [44, 45]. CS is applied to reduce the data vol-

ume that needs processing, which leads to lower energy consumption in WSN and faster

data processing [46].

The CS works by using fewer random measurements. Then the CS problem can be

formulated as shown in Figure 2.1 as follows:

y = Φx (2.7)

where x ∈ RN is a signal input. Φ ∈ RM×N is random measurement matrix and

y ∈ RM is the measurement vector. Compressive measurements are produced by mul-

tiplying the input signal by the random measurement matrix. The length of the input
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Figure 2.1: CS Model.
[47]

signal is longer than the number of measurements (M << N ). The sparsity of the input

signal has a direct relationship with the size of the measurement matrix and, thus, the

total number of measurements. The measurement matrix must be incoherent with the

basis where the signal is represented sparsely in order to further reduce the number of

measurements needed for accurate reconstruction [48, 49].

Recover x from knowledge of by measurement vector y and measurement matrix

Φ is utilized in the CS reconstruction algorithm. When data is compressed, a set of

undetermined equations must be solved in order to reconstruct the data. There are an

infinite number of ways to reconstruct x, and discovering the perfect candidate involves

limited minimization of the ℓg(x) norm [50]:

argmin∥x∥g s.t. y = Φx (2.8)

The optimal solution would be ℓ0, but since finding all nonzero elements is all it takes

to obtain the answer, it is excessively noise-sensitive (easily satisfied by noise). Basic

Pursuit (BP), which employs global optimization and is capable of stable super-resolve
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Figure 2.2: ℓ1 minimization versus ℓ2 minimization
[52]

for the ℓ1 norm [51]. Due to the ℓ1 ball’s form, ℓ1 minimization does in effect enhance

sparsity. To illustrate this fact, we refer the reader to Figure 2.2, in which the ℓ1 mini-

mization is compared to ℓ2 minimization.

Additional recovery methods include Orthogonal Matching Pursuit (OMP) [53], Ba-

sis pursuit Denoising (BPD) [54], and Regularised OMP (ROMP) [55]. BP is the most

commonly employed linear programming approach when compared to other approaches

[56].

2.4 K-Nearest Neighbor

KNN is a simple but effective machine learning algorithm [57]. It is one of the

oldest algorithms and simplest ways to classify patterns. It is applied to classify data

based on the nearby of a particular query point. Its performance depends critically on the

distance measurement used to locate nearest neighbors [58]. The value of K in the KNN

algorithm determines the number of neighbors scanned to determine the classification
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of a given query point.

The KNN has been employed in many different applications like data prepossessing,

finance, medical diagnosis, prediction, and pattern recognition [59]. The KNN can be

implemented in different applications for WSN such as intrusion detection [60], missing

data estimation [61], a query that facilitates the collection of sensor data samples [62],

location estimation [63].

Figure 2.3: A simple KNN

The unlabeled data is categorized using the nearest neighbor technique by figuring

out which class its neighbors fall within. This idea is utilized in the calculation of the

KNN algorithm [64]. With the KNN algorithm, a particular value of K is fixed, assisting

us in categorizing the unknown tuple [65]. Figure 2.3 shows the sample example for

KNN. The Euclidean distance and K’s value are two variables that determine KNN
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performance. The steps are as follows in order to understand the algorithm’s operation:

Given the data set: (x1, y1), (x2, y2), . . . (xN , yN)

Step 1:store the data set (red circles).

Step 2: calculate the Euclidean distance between a particular query point (x, y) (blue

circle) and each data set using the formula:

√
(x− xi)2 + (y − yi)2 (2.9)

Step 3: Find the KNN by choosing the data that is nearest to the particular query point.

The classification’s outcome is sensitive to the value of K. The input value K deter-

mines how many neighbors must be taken into consideration. From Figure 2.3 if K = 3

then the nearest neighbor became 3, and when K = 5 the nearest neighbor became 5.

2.5 Kalman Filter

The KF algorithm uses a linear method for estimating the optimal state. A KF acts

as a filter and the objective of the filter is to take a series of measurements observed over

time containing uncertainty, noise, or some errors to predict the next state certainty [66].

KF is adapted in many application fields such as guidance, navigation, and control of

vehicles and aircraft. Furthermore, it also plays an important role in the fields of space-

craft orbit calculations, ship positioning, sensor data fusion, and digital image process-

ing [67]. In addition to tracking the moving targets [68]. KF has an easy-to-understand

structure and needs little processing power. Also, it is attractive that theoretically. The

ideal state is precisely determined with the minimum variance error [68].
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2.5.1 Problem Definitions

In state space format, KF is exploited to estimate states based on linear dynamical

systems. The process model gives the following description of the state’s evolution from

time t− 1 to time t [69]:

xt = Fxt−1 +But−1 +wt−1 (2.10)

Where F is the state transition matrix used to apply to the prior state vector xt−1, B

is the control-input matrix used to transform the control vector ut−1, and wt−1 is the

process noise vector, which is defined as being zero-mean Gaussian with the covariance

Q, i.e., wt−1 ∼ N (0,Q).

The measurement model is operated in concert with the process model to describe

the relationship between the measurement and the state at the current time step t as [69]:

z = Hxt + vt (2.11)

where z is the measurement vector, H is the measurement matrix, and vt is the mea-

surement noise vector that is assumed to be zero-mean Gaussian with the covariance R,

i.e., vt ∼ N (0,R). Note that sometimes the term ‘measurement’ is called ‘observation’

in different literature.

The role of the KF is to provide an estimate of xt at time t, given the initial es-

timate of x0, the series of observations, z1, z2, . . . .,zt, and the details of the system

as represented by F ,B,H ,Q, and R. Note that by assuming that they are invariant

across time, as in most applications, subscripts to these matrices are omitted here. The
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covariance matrices are intended to reflect the statistics of the noise. However, in many

practical applications, the true statistics of the noises are unknown or not Gaussian.

In order to achieve a desired performance, Q and R are typically employed as tuning

parameters that the user can change [70].
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CHAPTER 3

THE SIMULATION MODEL DESCRIPTION AND

METHODOLOGY

3.1 Introduction

This chapter involves explains the mathematical models of multi-target detection

and tracking by using CS theory, practical scenarios, energy model, sensor management,

and KF.

=

3.2 Proposed Target Detection Approach

Compressed sensing (CS) theory formulates the multiple target detection problem

as approximating a sparse vector with some TOA measurements. The sensors collect

the signals reflected off all targets, and send them in one packet to the BS [71]. The

approach reduces the number of transmission processes of the target detection in the

monitoring field, which reduces the energy consumption in the transmission process,

and detection time, and increases the lifetime of WSN by reducing the number of bits

for all targets. The CS approach also does not put constraints on the location of the

sensor nodes (i.e., off-grid sensors).
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Suppose that we have a field of dimensions (R×R). The field is partitioned into N

uniformly-spaced grid points. Assume that the grid points are j = 1, 2, . . . , N , where

sj = (xj, yj) is the coordinates of the location of the grid points. The m on-grid targets

appear inside the monitoring field. Also, there is a single BS that is located in the center

of the monitoring field. Static sensors are distributed randomly in the monitoring field.

The sensors work in two modes: sleep and wake-up. The sensors stay in the sleep

state and periodically wake up for a short time to emit a signal with the same power to

monitor the field for the existence of targets. The locations of sensor nodes are known

and can be obtained via GPS or by using self-localization algorithms [40]. Assume that

the sensors are i = 1, 2, . . . ,M , where si = (xi, yi) is the coordinates of the sensor’s

location. We assume that the number of grid points is greater than the number of sensor

nodes (N >> M ). When a sensor wakes up and m targets appear simultaneously in the

monitoring field, each sensor measures its relative distances to all of the m targets by

using TOA and reports this information, in one pack to the BS. For each sensor node,

the measurement distances are fused in vector d ∈ RM×1 and sent to the BS as follows:

di =
∑

h=1,...,m

di,h, i = 1, 2, . . . ,M (3.1)

where m represents the number of on-gird targets.

The BS constructs the measurement matrix D ∈ RM×N . Each element in this matrix

is calculated by using the coordinates of the sensor nodes and grid points as follows,

D =


d11 . . . d1N

... . . . ...

dM1 . . . dMN

 (3.2)
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where di,j represents the distance between sensor ith and grid point jth.

The BS recovered the target vector k ∈ RN×1 . Assuming that the number of targets

inside the scene of interest is small, CS theory can be used to estimate the number and

locations of the targets. The problem is to estimate target locations based on the TOA

information from all sensors d and the measurement matrix D. The problem can be

described as follows:

d = Dk (3.3)

Given the sparsity constraints, Basis Pursuit is used to recover the target vector k by

solving the following ℓ1-norm problem:

minimize ∥k∥1 subject to d = Dk (3.4)

Where the nonzero elements of the target vector represent the potential presence of a

target on the corresponding grid point. In addition, the number of nonzero elements

represents the number of detected targets. Thus, our proposed approach can detect the

number of targets and their location simultaneously.

3.3 Practical Approach for proposed model

In practice, there are minimum and maximum distance constraints for all the sensors.

In this section, we rewrite our model to take into consideration these constraints. Let

dmin and dmax represent the minimum and maximum distances for which the target

can be detected by the sensor, respectively. For a specific sensor, TOA readings are

reported for targets within the detection range, and targets outside this range are not

detected. BS only takes into consideration the sensors that report their reading (i.e.,
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if the target lies between dmin and dmax) and uses those readings to estimate target

locations. Mathematically, this affects some elements in the measurements matrix D to

become zeros (out of sensor detection range). This leads to the void of some elements

in D, which does not affect the size of D, nor changes the optimization problem used

to localize targets.

3.4 Energy Model

Increasing the lifetime of WSNs is considered one of the most crucial challenges in

WSNs. The transmission process to BS consumes most of the sensor energies. During

the process of transmission, the data are first converted to a digital form via the quan-

tization process. In this section, we discuss how the data fusion that is described in

Eq.(3.1) reduces the number of bits required for transmission. The consumed energy

required to transmit the data is modeled as follows [34, 36]:

Ei
TX = (α + β × dµi,BS)× n (3.5)

where α and β are constants related to the transmission and reception circuity, di,BS

is the distance between the ith sensor and BS, µ ∈ (2, 6) is the free-space exponent [36],

and n represents the number of transmitted bits.

In [23], the multilateration approach is used for targets’ detection. In this approach,

the sensors send the information bits for each target individually to the BS. The number

of bits n that are used to transmit all targets’ relative distances to BS can be determined

as follows:

n = m log2
Dmax

∆
(3.6)
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where Dmax is the sensing range (maximum expected distance between targets and sen-

sor nodes), m is the number of targets, and ∆ is the tolerable quantization error. Assum-

ing uniform quantization, and from Eq.(3.6), the number of bits is linearly proportional

to the number of targets detected inside the field, and the energy required to transmit

targets’ data is:

Ei
TX = (α + β × dµi,BS)× (m log2

Dmax

∆
) (3.7)

In the proposed CS-based approach, the sensors send their relative distances for all

detected targets in one pack to the BS, which reduces the amount of data (the number

of bits) sent by a sensor node. The number of bits sent to BS in the proposed approach

for achieving an equivalent quantization error as in the multilateration approach is

n = log2
mDmax

∆
(3.8)

and the required energy for transmitting targets’ data to BS is

Ei
TX = (α + β × dµi,BS)× (log2

mDmax

∆
) (3.9)

In the proposed approach, the number of bits is logarithmically proportional to the num-

ber of detected targets. One can see that the number of bits required for the proposed

approach to multi-target detection is less than that for the multilateration approach.
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3.5 Sensor Management

Tracking the moving target with the same subset of static sensors is not practicable

due to bandwidth limitations, energy limitations, and the restricted sensing range of the

sensor nodes. Moreover, using every sensor on the field is ineffective since sensors

located far from the target require more energy and provide inaccurate readings. The

sensors closest to the targets (also known as nearest neighbors) are chosen for tracking

in order to address this issue.

In each tracking step, the KNN algorithm can be used for sensor management in

tracking the moving targets in WSN to select a subset of the sensors based on the tar-

get’s location. The sensor around the targets is dynamically configured by adding or

removing sensors as the target moves through the sensing field. Including KNN not

only improves the tracking efficiency but also reduces the search area for the sensors

to be activated for future predictions. In each step of tracking the subset of the sensor

collected the information of targets using the CS theory and multilateration technique.

3.6 Multi Target Tracking

Target tracking begins after the detection and localization of the target in the field.

For target tracking, different linear and nonlinear filters were proposed, such as KF,

Extended Kalman Filter (EKF), and Unscented Kalman Filter (UKF).

A KF is a prediction-based algorithm that uses distance as a parameter for estimat-

ing the target trajectory. When the targets appear in the field, the sensor surrounding the

targets can be estimated the target position sa = (xa, ya) by using CS theory or mul-

tilateration technique through the measurement of TOA. The KF works in a two-step
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process: prediction (time measurements) and update (measurement corrections). The

current state vector is employed for computing the predicted system state vector.

State prediction equation [39]:

x̂t+1,t = F x̂t,t (3.10)

Error covariance prediction equation [39]:

P t+1,t = FP t,tF
T +Q (3.11)

where x̂t+1,t is the predicted next state of the target at time step t + 1, F is the state

transition matrix, x̂t,t is the current state vector, P t+1,t is the predicted error covariance,

P t,t is the error covariance of the current state estimation, and Q is the covariance

matrix.

Kalman gain equation [39]:

Kt+1 = P t+1,tH
T (HP t+1,tH

T +R)−1 (3.12)

where Kt+1 is the Kalman Gain, and R is the measurement noise, and H is the obser-

vation matrix simplified to:

H =

1 0 0 0 0 0

0 0 0 1 0 0

 .
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Estimation update equation [39]:

x̂t,t = x̂t+1,t +Kt+1(zt −Hx̂t+1,t) (3.13)

where zt is the observation state vector, which represents the coordinates of the tar-

gets estimated from the readings of selected sensors surrounding the targets via CS or

multilateration technique.

Error covariance update [72]:

P t,t = (I −Kt+1H)P t+1,t(I −Kt+1H)T +Kt+1RKT
t+1 (3.14)

where I is an identity matrix.

All KF equations are repeated at every tracking step, with new prediction and co-

variance matrix.

Algorithm of Proposed Multi-Target Tracking

1. for i = 1 : S

2. The BS used KF to predict the location of the target.

3. KNN used the predicted target location to select and activate the subset sensor

node around the target.

4. Active sensor node calculated the distance between them and the targets, fusion

the information for all targets, and sends them in one pack to BS.

5. The BS received the information and updated the predicted target location. end
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CHAPTER 4

SIMULATION AND RESULTS

4.1 Introduction

The results obtained are presented and discussed for two cases ( detection and track-

ing) using the Matlab program. The first case presents Simulation and Results for multi-

target detection to compare the results of the proposed model (CS) with the traditional

approach (multilateration) illustrated in Chapter Two in terms of the Performance of

target detection and network lifetime. The second case presents simulation results for

multi-target tracking to compare the results of the proposed model with the traditional

approach for MTT in WSN to show the efficacy of tracking and energy efficiency with

the CS approach.

4.2 Simulation and Results for multi-target detection

In this section, simulation and results for multi-target detection and the lifetime for

WSN are reported. We consider a two-dimensional monitoring field with 100×100m2.

For the CS theory (proposed approach), the field of interest is partitioned uniformly into

100 grid points. A Monte Carlo simulation with 1000 trials was conducted. In each trial,

50 static sensor nodes were distributed randomly, and m targets were randomly placed

on the grid points. Figure 4.1 shows the example of WSN with dimension 100×100m2,

50 sensors were distributed randomly, and a single BS was in the center of the fields.
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The dmin = 10m and dmax = 100m for the practical approach.
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Figure 4.1: An example showing WSN .
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4.2.1 Performance of Target Detection

This subsection presents simulation results regarding target detection among all ap-

proaches. The targets were localized using a multilateration approach, CS-based ap-

proach, and practical scenarios (section 3.3). Due to the superior performance of the

multilateration approach and dependence on TOA to detect the targets, we took this

approach as a benchmark to compare with the proposed CS-based approaches. The Re-

ceiver Operating Characteristic (ROC) curve is applied to evaluate the performance of

all approaches. We declare successful detection when all targets are detected and local-

ized in their nearest grid points. We consider false detection when at least one target

that does not belong to the real simulated targets is detected.

Figure 4.2 shows ROC curves when the number of targets is 6, 12, and 18, respec-

tively. From Figure 4.2(a), one can see that the three approaches detect all targets with

the same detection accuracy for 6 targets. On the other hand in Figure 4.2(b), the per-

formance of the CS-based approaches degrades when the number of targets is 12 due

to the reduction in the sparsity level. It is worth mentioning that the practical proposed

approach performs better than the ideal case for 18 sources as shown in Figure 4.2(c).

Such improvement is due to the zeros that appear in the measurement matrix for the

practical case, which reduces the correlation among the columns in the sensing matrix

D.
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Figure 4.2: comparison of the performance of the proposed approach, proposed practi-
cal, with the multilateration approach.
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4.2.2 Sensors Lifetime in WSN

In this subsection, we compare the lifetime of WSN (i.e., the number of rounds) ver-

sus the number of targets for two approaches (proposed and multilateration approaches).

The initial energy for each sensor is 1J . We set Dmax ,∆, α, β, and µ to 150m, 0.15m,

50nJ/bit, 100PJ/(bit.m2), and 2, respectively [34, 36]. Figure 4.3 shows the lifetime

of WSN for the proposed (CS theory) and the multilateration approaches for a different

number of targets. One can see that the proposed approach dramatically increases the

lifetime, and the improvement increases as the number of targets increases. This be-

havior is a result of the fusion process (in Eq. 3.1) which reduces the total number of

transmitted bits from the sensors to the BS, as illustrated in Section 3.4.
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Figure 4.3: Comparison of the lifetime of WSN using the proposed approach, and mul-
tilateration approach.

36



4.3 Simulation and Result for Multi-Target Tracking

This section presents simulation and results for MTT in WSN using a KF to show

the efficacy of tracking and energy efficiency with the CS approach. We consider a

scene with 100 static sensors node randomly distributed with a radio range of 100 m.

The sensing field is a 400×400m2. For the CS theory, the field of interest is partitioned

uniformly into 40, 000 grid points. There are (3, 4) moving targets with variable velocity

and constant acceleration in the field, and the K of KNN are 10 sensors that surround

the targets.

The state vector of target a is defined as xt,t =

[
xa, ya, ẋa, ẏa, ẍa, ÿa)

]T
, where

(xa, ya) is position of the target, (ẋa, ẏa) are the target velocity, and (ẍa, ÿa) are the

target acceleration projected onto the x and y coordinates, respectively. We set the

initial velocity and acceleration to 0. The equations of target tracking in section 3.6,

with parameters given by

F =



1 ∆t 0.5∆t2 0 0 0

0 1 ∆t 0 0 0

0 0 1 0 0 0

0 0 0 1 ∆t 0.5∆t2

0 0 0 0 1 ∆t

0 0 0 0 0 1


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Q =



∆t4

4
∆t3

2
∆t2

2
0 0 0

∆t3

2
∆t2 ∆t 0 0 0

∆t2

2
∆t 1 0 0 0

0 0 0 ∆t4

4
∆t3

2
∆t2

2

0 0 0 ∆t3

2
∆t2 ∆t

0 0 0 ∆t2

2
∆t 1



× σ2
a

Where σ2
a = 10000m

s2
is a random acceleration standard deviation, the measurements

period ∆t = 0.1s.

Each target can be tracked by more than one sensor. The observing measurements

are collected by the sensors that surround the targets.

The measurement uncertainty R =

σ2
xm

0

0 σ2
ym



We applied Eq. (3.5) for CS theory and the multilateration technique to compare the

difference in energy consumption for each sensor. We set ∆, α, β, and µ to 0.15 m, 50

nJ/bit, 100 PJ/(bit.m2) and 2 respectively [34, 36]. The initial energy for each sensor

is 5 J and (3, 4) targets can appear in the sensing field. Given the sensing range, one

can easily conclude that Dmax = 100 m (sensing range). The colored circles represent

the difference in the energy consumed by the sensors between the CS theory and the

multilateration technique.

Figure 4.4,4.7,4.10, and 4.13 depicts the trajectories of targets. In Figure 4.4,4.10,
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and 4.13 the differences in energies consumed by the sensors between CS theory and

multilateration technique are large (about 100). This is due to the slow velocities of

targets (dense circles) at the start of the path. While in Figure 4.7 the velocity of the

target starts slow 20 m
s

, then the velocity increase to 50 fracms and slows again to 20 m
s

at the end of the trajectories. This affected the energy consumed by the sensor. Figure

4.7 shows that the slow speed of the moving target causes energy consumed differences

to increase between the CS theory and the multilateration technique. sensors far away

from the target do not contribute to the detection and tracking of the targets, and they

keep their energy. Figure 4.10 shows the trajectories of targets that are far off from one

another and not shared by a set of sensors. Energy consumption for most sensors is the

same for multilateration and CS approaches.

Figure 4.5,4.8,4.11, and 4.14 shows the amount of energy consumed by the sensors

in the process of tracking detected targets in the field for two the detection approaches:

the CS and multilateration techniques. One can see that the amount of energy the sensors

spend in CS theory is less than the multilateration technique due to fusing the informa-

tion of targets in CS theory.

Figure 4.6,4.9,4.12, and 4.15 depicts the projected path of all targets using collocated

data from CS and the multilateration approach. In comparison to the original path, it

shows how accurately the predicted path tracks with linear target trajectories.
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Figure 4.4: The 3 trajectories of targets. * are original trajectories of targets, the col-
ored circles represent the sensor and the color is the difference in the amount of energy
consumed by the sensors between the proposed approach and multilateration technique
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Figure 4.5: The consumed energy by the sensors to track 3 targets.

40



50 100 150 200 250 300 350 400

Distance in Meters

0

50

100

150

200

250

300

350

400

D
is

ta
n

c
e

 i
n

 M
e

te
rs

Original Path

Predicted Path Using CS

Predicted Path Using Multilateration

Figure 4.6: Comparison of the original and predicted path of targets .
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Figure 4.7: The 3 trajectories of targets. * are original trajectories of targets, the col-
ored circles represent the sensor and the color is the difference in the amount of energy
consumed by the sensors between the proposed approach and multilateration technique
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Figure 4.8: The consumed energy by the sensors to track 3 targets.
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Figure 4.9: Comparison of the original and predicted path of targets .
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Figure 4.10: The 3 trajectories of targets. * are original trajectories of targets, the
colored circles represent the sensor and the color is the difference in the amount of
energy consumed by the sensors between the proposed approach and multilateration
technique
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Figure 4.11: The consumed energy by the sensors to track 3 targets.
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Figure 4.12: Comparison of the original and predicted path of targets .
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Figure 4.13: The 4 trajectories of targets. * are original trajectories of targets, the
colored circles represent the sensor and the color is the difference in the amount of
energy consumed by the sensors between the proposed approach and multilateration
technique
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Figure 4.14: The consumed energy by the sensors to track 4 targets.
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Figure 4.15: Comparison of the original and predicted path of targets .
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We compare the performance of the target tracking for two collocated data mod-

els: CS theory and multilateration technique using average Mean square error (MSE)

between the original path and the predicted path of the target. In Figure 4.6,4.9,4.12,

and 4.15 the average MSE for estimated target trajectories of all targets measurements

are summarized in Table 4.1. From the Table, we can see the tracking errors using CS

theory are generally bigger than the multilateration technique for most cases. However,

the average MSE for CS are small, and they fall within the acceptable ranges for most

applications.

Table 4.1: Average MSE

Fig. CS Multilateration
4.4 0.1477 0.0672
4.7 6.2941× 10−4 2.4233× 10−26

4.10 9.019× 10−7 2.286× 10−4

4.13 0.0919 1.2909× 10−4
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In light of what has been presented in the analysis of multi-target detection and

tracking, the following conclusions have been arrived at:

1. For detection, a CS-based approach has been proposed. The proposed approach

fuses the sensor readings for a number of the target in one packet, which re-

duces the number of the transmitted process required for multi-target detection

compared to the traditional approach. Reducing the number of transmitted bits

increases the lifetime of WSN and reduces the energy consumed in the trans-

mission process. Simulation results show a substantial increase in WSN lifetime

without compromising the detection accuracy for a relatively large number of tar-

gets compared to the traditional multilateration approach.

2. For MTT, KF is used to predict the target’s trajectories. In order to save energy,

the KNN algorithm has only been used to choose a portion of the sensors that con-

tribute to MTT and to narrow the search space for the sensors that will be selected

for future predictions. In each tracking step, a CS-based target detection method

has been suggested for data Collection and compared to the conventional method.

The suggested method consolidates the sensor readings for several targets into
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a single packet, reducing the number of sent processes needed for multi-target

tracking. The decrease of transmitted bits extends the lifespan of WSN, and the

energy required for transmission is decreased.

5.2 Future Work

The following are some suggestions for future work for multi-target and tracking in

wireless sensor networks:

1. The proposed algorithm for multi-target detection used the grid point to achieve a

condition of sparse, the target appears in this grid point. We propose an approach

to tackle off-grid target localization.

2. To increase accuracy, the BS can select which sensor to deliver data using an

adaptive or selective CS-based approach.
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