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CHAPTER 1 REINFORCED CONCRETE STRUCTURES

1.1 INTRODUCTION

Many structures are built of reinforced concrete: bridges, viaducts, buildings, retaining walls,
tunnels, tanks, conduits, and others.

Reinforced concrete is a logical union of two materials: plain concrete, which possesses high
compressive strength but little tensile strength, and steel bars embedded in the concrete,
which can provide the needed strength in tension.

First practical use of reinforced concrete was known in the mid-1800s. In the first decade of
the 20th century, progress in reinforced concrete was rapid. Since the mid-1950s, reinforced
concrete design practice has made the transition from that based on elastic methods to one
based on strength.

Understanding of reinforced concrete behavior is still far from complete; building codes and
specifications that give design procedures are continually changing to reflect latest
knowledge.

1.2 REINFORCED CONCRETE MEMBERS

Every structure is proportioned as to both architecture and engineering to serve a particular
function. Form and function go hand in hand, and the beat structural system is the one that
fulfills most of the needs of the user while being serviceable, attractive, and economically
cost efficient. Although most structures are designed for a life span of 50 years, the
durability performance record indicates that properly proportioned concrete structures have
generally had longer useful lives.
Reinforced concrete structures consist of a series of “members” (components) that interact
to support the loads placed on the structures.
The components can be broadly classified into:

1. Floor Slabs
Floor slabs are the main horizontal elements that transmit the moving live loads as well as
the stationary dead loads to the vertical framing supports of a structure. They can be:

e Slabs on beams,

o Waffle slabs,

e Slabs without beams (Flat Plates) resting directly on columns,

e Composite slabs on joists.
They can be proportioned such that they act in one direction (one-way slabs) or
proportioned so that they act in two perpendicular directions (two-way slabs and flat
plates).

2. Beams
Beams are the structural elements that transmit the tributary loads from floor slabs to

vertical supporting columns. They are normally cast monolithically with the slabs and are
1
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structurally reinforced on one face, the lower tension side, or both the top and bottom
faces. As they are cast monolithically with the slab, they form a T-beam section for interior
beams or an L beam at the building exterior.
The plan dimensions of a slab panel determine whether the floor slab behaves essentially as
a one-way or two-way slab.

3. Columns
The vertical elements support the structural floor system. They are compression members
subjected in most cases to both bending and axial load and are of major importance in the
safety considerations of any structure. If a structural system is also composed of horizontal
compression members, such members would be considered as beam-columns.

4. Walls
Walls are the vertical enclosures for building frames. They are not usually or necessarily
made of concrete but of any material that esthetically fulfills the form and functional needs
of the structural system. Additionally, structural concrete walls are often necessary as
foundation walls, stairwell walls, and shear walls that resist horizontal wind loads and
earthquake-induced loads.

5. Foundations
Foundations are the structural concrete elements that transmit the weight of the
superstructure to the supporting soil. They could be in many forms:

e |solated footing - the simplest one. It can be viewed as an inverted slab transmitting

a distributed load from the soil to the column.

e Combined footings supporting more than one column.

e Mat foundations, and rafts which are basically inverted slab and beam construction.

e Strip footing or wall footing supporting walls.

e Piles driven to rock.

Loads
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1.3 REINFORCED CONCRETE BEHAVIOR

The addition of steel reinforcement that bonds strongly to concrete produces a relatively
ductile material capable of transmitting tension and suitable for any structural elements,
e.g., slabs, beam, columns. Reinforcement should be placed in the locations of anticipated
tensile stresses and cracking areas. For example, the main reinforcement in a simple beam is
placed at the bottom fibers where the tensile stresses develop. However, for a cantilever,
the main reinforcement is at the top of the beam at the location of the maximum negative
moment. Finally for a continuous beam, a part of the main reinforcement should be placed
near the bottom fibers where the positive moments exist and the other part is placed at the
top fibers where the negative moments exist.

Reinforcement
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CHAPTER 2 MATERIALS, AND PROPERTIES

2.1 CONCRETE

Plain concrete is made by mixing cement, fine aggregate, coarse aggregate, water, and
frequently admixtures.
Structural concrete can be classified into:

e Lightweight concrete with a unit weight from about 1350 to 1850 kg/m3 produced

from aggregates of expanded shale, clay, slate, and slag.

Other lightweight materials such as pumice, scoria, perlite, vermiculite, and diatomite are
used to produce insulating lightweight concretes ranging in density from about
250 to 1450 kg/m3.

e Normal-weight concrete with a unit weight from about 1800 to 2400 kg/m3
produced from the most commonly used aggregates— sand, gravel, crushed stone.

e Heavyweight concrete with a unit weight from about 3200 to 5600 kg/m3
produced from such materials such as barite, limonite, magnetite, ilmenite, hematite,
iron, and steel punching or shot. It is used for shielding against radiations in nuclear
reactor containers and other structures.

2.2 COMPRESSIVE STRENGTH

The strength of concrete is controlled by the proportioning of cement, coarse and fine
aggregates, water, and various admixtures. The most important variable is (w/c) ratio.
Concrete strength (f.') — uniaxial compressive strength measured by a compression test of a
standard test cylinder (150 mm diameter by 300 mm high) on the 28" day—ASTM C31, C39.
In many countries, the standard test unit is the cube (200 x 200 X 200 mm).

The concrete strength depends on the size and shape of the test specimen and the manner
of testing. For this reason the cylinder (J150 mm by 300 mm high) strength is 80% of the
150 — mm cube strength and 83% of the 200 — mm cube strength.

Y
g 150 mm
S ASTM f.' ~ 0.80 fy
< cylinder Cube
B 150 mm
150 mm
fe! feu

Stress-strain relationship: Typical curves for specimens (150 X 300 mm cylinders) loaded in
compression at 28 days.
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Lower-strength concrete has greater
deformability (ductility) than higher-
strength concrete (length of the portion of
the curve after the maximum stress is
reached at a strain between 0.002 and
0.0025).
Ultimate strain at crushing of concrete
varies from 0.003 to as high as 0.008.
e In usual reinforced concrete design
f.' of (24 to 35 MPa) are used for
nonprestressed structures.
e f.' of (35t042 MPa) are used for
prestressed concrete.
e f.' of (42to97 MPa) are used
particularly in columns of tall
buildings.

2.3 TENSILE STRENGTH

Concrete compressive stress, £, ksi
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Concrete tensile strength is about 10 to 15% of its compressive strength.

The strength of concrete in tension is an important property that greatly affects that extent

P

and size of cracking in structures.

Tensile strength is usually determined by

using:

e Split-cylinder test (ASTM C496).
150 x 300 mm
compression test cylinder is placed on

A standard

its side and loaded in compression
along a diameter. The splitting tensile

strength f,; is computed as
2P

fct=@

P
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e Tensile strength in flexure (modulus of rupture) (ASTM C78 or C293). A plain concrete
beam 150 X 150 mm X 750 mm long, is loaded in flexure at the third points of
600-mm span until it fails due to cracking on the tension face. Modulus of rupture f,

is computed as

M 6M  6Pa
f =TT o T R
It is accepted (ACI 9.5.2.3) that an average value for f,- may be taken as
fr =0.62 A/f.", f, inMPa
where A =1 fornormalweight concrete.

MPa
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e Direct axial tension test. It is difficult to measure accurately and not in use today.

2.4 MODULUS OF ELASTICITY

The modulus of elasticity of concrete varies, unlike that of steel, with strength.
A typical stress-strain curve for

shown. The initial modulus

(tangent at origin), the tangent /

modulus (at 0.5 f."), and the
secant modulus are noted.

oh

concrete in compression is I
|
T
i
i

|
+Tangent modulus at 0.54
|

+ Ultimate strain

. . typically varies
Initial modulus {tangent at origin) from 0.003 to

Usually the secant modulus at
from 25to50% of the
compressive strength f." s

I 0.51::’ J e i_\m___ 0.004

considered to be the modulus

Concrete compressive stress

. . .. Secant modulus at 0.57
of elasticity. The empirical |

formula given by ACI-8.5.1

1

0 0.001 0.002 0.003 0.004
E. = 0.043wl5\/f.

Concrete strain, in./in.
For normalweight concrete, E,

shall be permitted to be taken as E, = 4700,/f,,
where, 1440 < w, < 2560 kg/m3® and f! in MPa .

2.5 CREEP AND SHRINKAGE

Creep and shrinkage are time-dependent deformations that, along with cracking, provide
the greatest concern for the designer because of the inaccuracies and unknowns that
surround them. Concrete is elastic only under loads of short duration; and, because of
additional deformation with time, the effective behavior is that of an inelastic material.
Deflection after a long period of time is therefore difficult to predict, but its control is

needed to assure serviceability during the life of the structure.
7
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Creep (or plastic flow) is the property of concrete (and other materials) by which it
continues to deform with time under sustained loads at unit stresses within the accepted
elastic range (say, below 0.5 f;). This inelastic deformation increases at a decreasing rate
during the time of loading, and its total magnitude may be several times as large as the
short-time elastic deformation. Frequently creep is associated with shrinkage, since both are
occurring simultaneously and often provide the same net effect: increased deformation with
time.

The internal mechanism of creep, or "plastic flow" as it is sometimes called, may be due to
any one or a combination of the following: (1) crystalline flow in the aggregate and hardened
cement paste; (2) plastic flow of the cement paste surrounding the aggregate; (3) closing of
internal voids; and (4) the flow of water out of the cement gel due to external load and
drying.

Factors affecting the magnitude of creep are (1) the constituents—such as the composition
and fineness of the cement, the admixtures, and the size, grading, and mineral content of
the aggregates: (2) proportions such as water content and water-cement ratio; (3) curing
temperature and humidity; (4) relative humidity during period of use; (5) age at loading; (6)
duration of loading; (7) magnitude of stress; (8) surface-volume ratio of the member; and (9)

slump.
A
Load ramoved
Load applied
Y
.5 Elastic recovery
& V/ ec = Creep strain ]
— |\: Creep recovery
“‘*‘M—__
¢ = Elastic strain Permanent
| defermation
I -
0 ig t -
Time

Creep of concrete will often cause an increase in the long-term deflection of members.
Unlike concrete, steel is not susceptible to creep. For this reason, steel reinforcement is
often provided in the compression zone of beams to reduce their long-term deflection.

Shrinkage, broadly defined, is the volume change during hardening and curing of the
concrete. It is unrelated to load application. The main cause of shrinkage is the loss of water
as the concrete dries and hardens. It is possible for concrete cured continuously under water
to increase in volume; however, the usual concern is with a decrease in volume. In general,
the same factors have been found to influence shrinkage strain as those that influence
creep—primarily those factors related to moisture loss.
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Shrinkage strain

Eshy

Egh

2.6 STEEL REINFORCEMENT

The useful strength of ordinary reinforcing steels in tension as well as compression, the yield
strength is about 15 times the compressive strength of common structural concrete and well

over 100 times its tensile strength.

. . Rolled welded fobric
Steel reinforcement may consist of :

e Bars (deformed bars, as in picture below) — for usual construction.

e Welded wire fabric — is used in thins slabs,
thin shells.

e Wires — are used for prestressed concrete. 120

140

The “Grade” of steel is the minimum specified yield

stress (point) expressed in:
e MPa for Sl reinforcing bar Grades 300, 350, "
420, and 520.
e ksi for Inch-Pound reinforcing bar Grades
40, 50, 60, and 75.

Stress, ksl

3

|
|
The introduction of carbon and alloying additives in ? i i ' [ r 7
steel increases its strength but reduces its ductility. . : : l | “
The proportion of carbon used in structural steels .l | ‘ !
varies between 0.2% and 0.3%. oi o D_{L, o o,l,é O;O o
o.ooz2

The steel modulus of elasticity (E;) is constant for strain
all types of steel. The ACI Code has adopted a value of E; = 2 X 10> MPa (29 X 10° psi ).

9

MPa
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Summary of minimum ASTM strength requirements

ASTM Minimum Yield Minimum Tensile
Product Specification Designation Strength, psi (MPa) Strength, psi (MPa)
Reinforcing bars A615 Grade 40 40,000 (280) 60,000 (420)
Grade 60 60,000 (420) 90,000 (620)
Grade 75 75,000 (520) 100,000 (690)
AT706 Grade 60 60,000 (420) 80,000 (550)
[78,000 (540) maximum]
A996 Grade 40 40,000 (280} 60,000 (420)
Grade 50 50,000 (350) 80,000 (550)
Grade 60 60,000 (420) 90,000 (620)
A1035 Grade 100 100,000 (690) 150,000 (1030)
Deformed bar mats Al84 Same as reinforcing bars
Zinc-coated bars AT67 Same as reinforcing bars
Epoxy-coated bars AT75, A934 Same as reinforcing bars
Stainless-steel bars® A955 Same as reinforcing bars
Wire
Plain AR2 70,000 (480) 80,000 (550)
Deformed A496 75,000 (515) 85,000 (585)
Welded wire reinforcement
Plain Al185
W1.2 and larger 65,000 (450) 75.000 (515)
Smaller than W1.2 56,000 (385) 70,000 (485)
Deformed A497 70,000 (480} 80,000 (550)
Prestressing tendons
Seven-wire strand Adl6 Grade 250 212,500 (1465) 250,000 (1725)
(stress-relieved)
Grade 250 225,000 (1555) 250,000 (1725)
(low-relaxation)
Grade 270 229,500 (1580) 270,000 (1860)
(stress-relieved)
Grade 270 243,000 (1675) 270,000 (1860)
{low-relaxation)
Wire A421 Stress-relieved 199,750 (1375) to 235,000 (1620) to
212,500 (1465)° 250,000 (1725)°
Low-relaxation 211,500 (1455) to 235,000 (1620) to
225,000 (1550) 250,000 (1725)¢
Bars AT22 Type I (plain) 127,500 (800) 150,000 (1035)
Type 1I (deformed) 120,000 (825) 150,000 (1035)
Compacted strand® ATT9 Type 245 241,900 (1480) 247,000 (1700)
Type 260 228,800 (1575) 263,000 (1810)
Type 270 234,900 (1620) 270,000 (1860)

¢ But not less than 1.25 times the actual yield strength.

b Not listed in ACI 318.

¢ Minimum strength depends on wire size.

10



Dr. Nasr Abboushi

Reinforced Concrete |

98vcl | 6EL'EVL | GEC' Ll | OEELLL | 9cv'S6 | CcG6L | LL9€9 | E€LL.LY | 608°LE | ¥OBSL G
G986 | L60CLL | LESO0L | S96°L8 | 86€GL | CEBCY | G9C0S | 669.E | €€L'9T | 995°7¢Cl )7
166°L 609'L6 | OE¥'L8 | LSC'LL | €019 | #6805 | GLLO¥ | 9€S0€ | 8SE0C | 6LL°0L o€
7i€9 c8ECL | OVEY9 | L6C9S | 9S¢8F | clcOv | 0LL¢CE | Lcl'vC | G809l cr0'8 49
vE'Y 8L¥GG | 09¢6¥ | €0L'EY | G¥6'9E | 88L°0E | 0€9¥C | €L¥8L | GLETL 8519 8¢
vG8'e 6LL¥y | 0LC6E | LOEPE | CG¥6C | ¥PPSVZ | GE96L | 92L YL L1886 606t T4
786°C cle¥e | LLPOE | 6099C | 808Cc | LOO'GL | SOCGL | ¥O¥'LL €09°L 108°€ e
99%°¢C v.c8C | €EL'GC | 166'Lc | 098'8L | 80L°GL | 99G5°¢Cl Ger'e €829 crle 0¢C
866} c06'CcC | 8S€0C | €18LL | 892SL | €¢LCl | 6LL0L ¥€9'L 680G Grs'C 8l
8.G°) 96081 | S809L | ¥.0¥L | ¥90¢CL | €500l cr0'8 ce0'9 120y 110°C 9l
80¢C’) PS8EL | SLECL | 9LL0l 9€C’6 L69°L 8519 8L9Y 6L0°€ 6ES'L 142
888°0 6L1°01 8¥0'6 LI6'L 98.°9 GG9'G vesy £6E°€ ¢9C'C LEL'L ¢l
L19°0 690°L €829 867G clLy L6 crle 9G€'C LLS7) G8.0 ol
G6E0 vesy Lc0'v 6LG°€ 910 €16C 110°¢C 80S°1 G0O'L €050 8
¢cco Gvs'e AT 6.6°) 969°1 viv'l LEL'L 8780 G9S0 €820 9
w /By 6 8 L 9 G 14 ¢ l 2 Wi
‘ssep ‘1ajawielq

W2 ‘ sIeq Jo JaquinN 1o} sieqd jo ealy

SA.INJINI)S 3JIIIUOI PIVIOJUIAI 10] S.Ae( [39)S PIEPUR)S JO SLITY [EUOI)IIS $SO.1))

11



Reinforced Concrete | Dr. Nasr Abboushi

CHAPTER 3 DESIGN METHODS AND REQUIREMENTS

3.1 ACI BUILDING CODE

When two different materials, such as steel and concrete, act together, it is understandable
that the analysis for strength of a reinforced concrete member has to be partly empirical.
These principles and methods are being constantly revised and improved as results of
theoretical and experimental research accumulate. The American Concrete Institute (ACI),
serving as a clearinghouse for these changes, issues building code requirements, the most
recent of which is the Building Code Requirements for Structural Concrete (ACI 318-08),
hereafter referred to as the ACI Code.
The ACI Code is a Standard of the American Concrete Institute. In order to achieve legal
status, it must be adopted by a governing body as a part of its general building code. The ACI
Code is partly a specification-type code, which gives acceptable design and construction
methods in detail, and partly a performance code, which states desired results rather than
details of how such results are to be obtained. A building code, legally adopted, is intended
to prevent people from being harmed; therefore, it specifies minimum requirements to
provide adequate safety and serviceability. It is important to realize that a building code is
not a recommended practice, nor is it a design handbook, nor is it intended to replace
engineering knowledge, judgment, or experience. It does not relieve the designer of the
responsibility for having a safe, economical structure.
ACl 318M-08 — Building Code Requirements for Structural Concrete and Commentary.
Two philosophies of design have long been prevalent:

e The working stress method (1900 — 1960).

e The strength design method (1960 till now, with few exceptions).

3.2 WORKING STRESS METHOD

In the working stress method, a structural element is so designed that the stresses resulting
from the action of service loads (also called working loads) and computed by the mechanics
of elastic members do not exceed some predesignated allowable values.
Service load is the load, such as dead, live, snow, wind, and earthquake, which is assumed
actually to occur when the structure is in service.
The working stress method may be expressed by the following:

f < fallow
where
f — an elastic stress, such as by using the flexure formula f = Mc/I for a beam, computed
under service load.
failow — @ limiting or allowable stress prescribed by a building code as a percentage of the
compressive strength f. for concrete, or of the yield stress for the steel reinforcing bars.

12
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3.3 STRENGTH DESIGN METHOD

In the strength design method (formerly called ultimate strength method), the service loads
are increased by factors to obtain the load at which failure is considered to be "imminent".
This load is called the factored load or factored service load. The structure or structural
element is then proportioned such that the strength is reached when the factored load is
acting. The computation of this strength takes into account the nonlinear stress-strain
behavior of concrete.

The strength design method may be expressed by the following,

strength provided 2 [strength required to carry factored loads]

where the "strength provided" (such as moment strength) is computed in accordance with
the provisions of a building code, and the "strength required" is that obtained by performing
a structural analysis using factored loads.

3.4 SAFETY PROVISIONS

Structures and structural members must always be designed to carry some reserve load
above what is expected under normal use. Such reserve capacity is provided to account for a
variety of factors, which may be grouped in two general categories:

e factors relating to overload

o factors relating to understrength (that is, less strength than computed by

acceptable calculating procedures).

Overloads may arise from changing the use for which the structure was designed, from
underestimation of the effects of loads by oversimplification in calculation procedures, and
from effects of construction sequence and methods. Understrength may result from adverse
variations in material strength, workmanship, dimensions, control, and degree of
supervision, even though individually these items are within required tolerances.
In the strength design method, the member is designed to resist factored loads, which are
obtained by multiplying the service loads by load factors. Different factors are used for
different loadings. Because dead loads can be estimated quite accurately, their load factors
are smaller than those of live loads, which have a high degree of uncertainty. Several load
combinations must be considered in the design to compute the maximum and minimum
design forces. Reduction factors are used for some combinations of loads to reflect the low
probability of their simultaneous occurrences. The ACI Code presents specific values of load
factors to be used in the design of concrete structures.
In addition to load factors, the ACI Code specifies another factor to allow an additional
reserve in the capacity of the structural member. The nominal strength is generally
calculated using accepted analytical procedure based on statistics and equilibrium; however,
in order to account for the degree of accuracy within which the nominal strength can be
calculated, and for adverse variations in materials and dimensions, a strength reduction
factor, ¢, should be used in the strength design method.

13
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To summarize the above discussion, the ACI Code has separated the safety provision into an
overload or load factor and to an undercapacity (or strength reduction) factor, ¢. A safe
design is achieved when the structure's strength, obtained by multiplying the nominal
strength by the reduction factor, ¢, exceeds or equals the strength needed to withstand the
factored loadings (service loads times their load factors).

The requirement for strength design may be expressed:

Design strength > Factored load (i. e., required strength)
¢P, = P,
M, = M,
PV 2V,

where P, M,,, and V;, are "nominal" strengths in axial compression, bending moment, and
shear, respectively, using the subscript n.

P,, M,,, and V,, are the factored load effects in axial compression, bending moment, and
shear, respectively, using the subscript u.

Given a load factor of 1.2 for dead load and a load factor of 1.6 for live load, the overall
safety factor for a structure loaded be a dead load, D, and a live load, L, is

1.2D + 1.6L<1>

D+L \¢

Factor of Safety = %

3.5 LOAD FACTORS AND STRENGTH REDUCTION FACTORS

Overload Factors U
The factors U for overload as given by ACI-9.2 are:
U=14(D+F)

U=12(D+F+T)+1.6( +H) +0.5(L, or SorR)
U =1.2D + 1.6(L, or SorR) + (1.0L or 0.8W)
U=1.2D + 1.6W + 1.0L + 0.5(L, or SorR)
U=1.2D + 1.0E + 1.0L + 0.2S

U=09D + 1.6W + 1.6H

U=0.9D + 1.0E + 1.6H

where
D - dead load; L - live load; L,- roof live load; S - snow load;
R - rain load; W - wind load; E - earthquake load; F - load due to

weights and pressures of fluids with well-defined densities and controllable maximum
heights; H - load due to weight and pressure of soil, water in soil or other materials;
T - the cumulative effect of temperature, creep, shrinkage, differential settlement, and
shrinkage compensating concrete.

14
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Strength Reduction Factors ¢
The factors ¢ for understrength are called strength reduction factors according to ACI-9.3.
and are as follows:

Strength Condition ¢ Factors

1. Flexure (with or without axial force)
Tension-controlled SECLIONS ....cveeveeeeeeiiene e e e 0.90
Compression-controlled sections

Spirally reinforced ... 0.75

OthErS ettt e e 0.65

2. Shear and tOrSION ... e ettt e e 0.75

3. Bearing ON CONCIELE ...ooviii ettt sttt st et s e 0.65

4. Post-tensioned anChorage ZONES .......ccvveieceeienese s s 0.85

5. Struts, ties, nodal zones, and bearing areas in strut-and-tie models ..... 0.75
Example:

A simple beam is loaded with a dead load of 40 KN/m and a live load of 30 KN /m. Check
the strength requirement according to ACI code if the nominal bending moment

M, =275 KN.m

2014
20 14

x

M

3@25% 45m

Solution:
M, =275 KN.m and ¢ =09

w, =12D+16L=12-40+1.6-30 =96 KN/m

wyl?  96-4.52
My = Mypqx = —g—=—2—— =243KN - m
dM, = M,

0.9-275=2475KN -m > 243 KN-m OK  Strength requirement is satisfied

¢

1.2D+16L /1 96 1
Factor of Safety = —( ) (

D+1L ~ 20 + 30 E>=1.52

15
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CHAPTER 4 FLEXURE IN BEAMS

4.1 INTRODUCTION
Reinforced concrete beams are nonhomogeneous in that they are made of two entirely
different materials. The methods used in the analysis of reinforced concrete beams are
therefore different from those used in the design or investigation of beams composed
entirely of steel, wood, or any other structural material.
Two different types of problems arise in the study of reinforced concrete:

1. Analysis. Given a cross section, concrete strength, reinforcement size and location,
and yield strength, compute the resistance or strength. In analysis there should be
one unique answer.

2. Design. Given a factored design moment, normally designated as M,. select a
suitable cross section, including dimensions, concrete strength, reinforcement, and
so on. In design there are many possible solutions.

The Strength Design Method requires the conditions of static equilibrium and strain
compatibility across the depth of the section to be satisfied.
The following are the assumptions for Strength Design Method:

1. Strains in reinforcement and concrete are directly proportional to the distance from
neutral axis. This implies that the variation of strains across the section is linear, and
unknown values can be computed from the known values of strain through a linear
relationship.

2. Concrete sections are considered to have reached their flexural capacities when they
develop 0.003 strain in the extreme compression fiber.

3. Stress in reinforcement varies linearly with strain up to the specified yield strength.
The stress remains constant beyond this point as strains continue increasing. This
implies that the strain hardening of steel is ignored.

Tensile strength of concrete is neglected.

5. Compressive stress distribution of concrete can be represented by the corresponding
stress-strain relationship of concrete. This stress distribution may be simplified by a
rectangular stress distribution as described later.

4.2 REINFORCED CONCRETE BEAM BEHAVIOR

Consider a simply supported and reinforced concrete beam with uniformly distributed load
on top. Under such loading and support conditions, flexure-induced stresses will cause
compression at the top and tension at the bottom of the beam. Concrete, which is strong in
compression, but weak in tension, resists the force in the compression zone, while steel
reinforcing bars are placed in the bottom of the beam to resist the tension force. As the
applied load is gradually increased from zero to failure of the beam (ultimate condition), the
beam may be expected to behave in the following manner:

16
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uniform load

} } i 1 I} | _ } | i 1 . i . - o
- g - S o ————— o 1 o — - I......_._'._.._ _._.-/_’.-.,,_.;._/Z_ N,:!q—
L . ' : ] _o:e : L/_ £
o © uncracked . e stresses

section

Stage | : before cracking

service.load

A O O O

concrete is neglected -
at this zone |, ™~ cracks
It NN e 1

A} : _ section

Stage Il : cracking stage, before yield, working load

ultimate load

1 | ' | 0.003
: | cracks I =S =g \ -
L gl WO N L AL
..““ ) = ,f\‘=fu
fﬁ ' cracked sectionES & | '
Stage Il : ultimate and failure stage at ultimate
et

Stage |: when the applied load is low, the stress

distribution is essentially linear over the depth
of the section. The tensile stresses in the
concrete are low enough so that the entire

e

AT
.-..l * f,

distribution is as shown in (a). In the compression zone, the concrete stresses are low

cross-section remains uncracked and the stress
enough (less than about 0.5 f;') so that their distribution is approximately linear.

Stage II: On increasing the applied load, the b
tensile stresses at the bottom of the beam — € fe

become high enough to exceed the tensile
. 4
L

strength at which the concrete cracks. After
cracking, the tensile force is resisted mainly

.
-]

by the steel reinforcement. Immediately

|[———]

below the neutral axis, a small portion of the
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beam remains uncracked. These tensile stresses in the concrete offer, however, only a small
contribution to the flexural strength. The concrete stress distribution in the compression
zone becomes nonlinear.

Stage lll: at nominal (so,-called ultimate) strength, the neutral axis has moved farther up-
ward as flexural cracks penetrate more and more toward the compression face. The steel

reinforcement has yielded and the .
c

PR

Fooo

concrete stress distribution in the
compression zone becomes more
nonlinear. Below the neutral axis,
the concrete is cracked except for

e —

| _"fs

a very small zone.

At the ultimate stage, two types of
failure can be noticed. If the beam is reinforced with a small amount of steel, ductile failure
will occur. In this type of failure, the steel yields and the concrete crushes after experiencing
large deflections and lots of cracks. On the other hand, if the beam is reinforced with a large
amount of steel, brittle failure will occur. The failure in this case is sudden and occurs due to
the crushing of concrete in the compression zone without yielding of the steel and under
relatively small deflections and cracks. This is not a preferred mode of failure because it does
not give enough warning before final collapse.

4.3THE EQUIVALENT RECTANGULAR COMPRESSIVE STRESS DISTRIBUTION
(COMPRESSIVE STRESS BLOCK)

0.85¢;

& F\ fé_J [ ] af2

.

| fsas]
—

|

B

|

\

) d (d —a/2)
As 7 T= A,
+—-—o—- = — L
y Actual Equivalent

]

The actual distribution of the compressive stress in a section has the form of rising parabola.
It is time consuming to evaluate the volume of compressive stress block. An equivalent
rectangular stress block can be used without loss of accuracy.

18
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The flexural strength M,, using the equivalent 0.85f;
rectangular, is obtained as follows: DA\Q
L

C =0.85flab j\ o/2
T = Af, i
\L C = 085f.ab
YE =0 gives T=C
(o}
Asf, = 085 flab P/AS
or
_ Asfy / s
=085 b
M, =T(d—§) = C(d—%)
My, = Agfy (d - %) or M, = 0.85 fab (d - g)

Notation:

a — depth of rectangular compressive stress block,

b — width of the beam at the compression side,

¢ — depth of the neutral axis measured from the extreme compression fibers,

d — effective depth of the beam, measured from the extreme compression fibers to the
centroid of the steel area,

h — total depth of the beam,

&. — strain in extreme compression fibers,

& — strain at tension steel,

f; — compressive strength of concrete,

fy — vield stress of steel,

Ag — area of the tension steel,

C — resultant compression force in concrete,

T — resultant tension force in steel,

M,, — nominal moment strength of the section.

Example:
Determine the nominal moment strength of the beam section. Take f, = 20 MPa,
fy =400 MPa.
Solution: 1 1
As(3D 25) = 14.72 cm? e c
. Asfy _ 14.72-100 - 400 _ 98.96 mm 305 25 § é
0.85f/b  0.85-20-350 T X o I

M =Af(d—z)=1472-100-400(540—ﬂ)-10-6= v

n sly 2 ) 2 \
= 288.82KN-m

~ b=35cm _

19
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4.4 TYPES OF FAILURE AND STRAIN LIMITS

Types of failure

Three types of flexural failure of a structural member can be expected depending on the
percentage of steel used in the section.
1. Steel may reach its yield strength before the concrete reaches its maximum strength,
In this case, the failure is due to the yielding of steel reaching a high strain equal to or
greater than 0.005. The section contains a relatively small amount of steel and is
called a tension-controlled section.

€. <€ | Tk |¢ ) *_f:‘—‘

X
[ N.A. B ,%
- A 7/
d // 1 /
s //
v /
Ay / /
—_——  — — — i e A
E:= El'=f\'JrE: fJ f).

Strain Stress At failure

2. Steel may reach its vyield

strength at the same time as

concrete reaches its ultimate g
L s/
strength. The section is called a P P
5
i - —8- — —_——
balanced section. } Py 5
Strain Stress
e h ——=

3. Concrete may fail before the i .
yield of steel, due to the [——— —_—

presence of a high percentage of

steel in the section. In this case, d - —————Ni-—-7 — -
. /

the concrete strength and its /

. . A ’ / S

maximum strain of 0.003 are renlll —L— _______L.f_<.f_.

reached, but the steel stress is £4= <8y =fJE, e

less than the yield strength, that  |«——b— ] Simhn Saens

is, fs is less than f;,. The strain in

the steel is equal to or less than 0.002. This section is called a compression-
controlled section.

The ACI Code assumes that concrete fails in compression when the concrete strain reaches
0.003.
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In beams designed as tension-controlled sections, steel yields before the crushing of con-
crete. Cracks widen extensively, giving warning before the concrete crushes and the struc-
ture collapses. The ACI Code adopts this type of design. In beams designed as balanced or
compression-controlled sections, the concrete fails suddenly, and the beam collapses
immediately without warning. The ACI Code does not allow this type of design.

Strain Limits for Tension and Tension-Controlled Sections

The ACI Code, Section 10.3. defines the concept of tension or compression-controlled
sections in terms of net tensile strain &; (net tensile strain in the reinforcement closest to the
tension face). Moreover, two other conditions may develop: (1) the balanced strain
condition and (2) the transition region condition.

These four conditions are defined as follows:

1. Compression-controlled sections are those sections in which & at nominal strength is
equal to or less than the compression-controlled strain limit (the compression-
controlled strain limit may be taken as a net strain of &, =0.002 - for
fy =400 MPa ) at the time when concrete in compression reaches its assumed
strain limit of 0.003, (e, = 0.003). This case occurs mainly in columns subjected to
axial forces and moments.

2. Tension-controlled sections are those sections in which the ¢, is equal to or greater
than 0.005 just as the concrete in the compression reaches its assumed strain limit of
0.003

3. Sections in which the &; lies between the compression-controlled strain limit of 0.002
(for f, = 400 MPa) and the tension-controlled strain limit of 0.005 constitute the
transition region.

4. The balanced strain condition develops in the section when the tension steel, with

the first yield, reaches a strain corresponding to its yield strength, f, or & = j;—y , just
N

as the maximum strain in concrete at the extreme compression fibers reaches 0.003.
In addition to the above four conditions, Section 10.3.5 of the ACI Code indicates that the
net tensile strain, &, at nominal strength, within the transition region, shall not be less than
0.004 for reinforced concrete flexural members without or with an axial load less than

0.10 f{ A4, where A, = gross area of the concrete section.

(@) (b) (0
€.=0.003 €. = 0.003 €. = 0.003 £ =0.003

|
¢y €3 / <
[ e
i "
e s o /
N
* o @ =

F,
€< L JEF—‘ < €,<0.005 €,>0.005 fTE
5

E, &, = 0.002 (f, = 400 MPa)

b Forf, =400 MPa €, <0.002 0.002 < €,< 0.005 €2 0.005
compressiqn-controlled transition region. tension-controlled Balanced strain
section section. section

Strain limit distribution
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Note that in cases where strain is less than 0.005 namely, the section is in the transition
zone, a value of the reduction ¢ lower than 0.9 for flexural has to be used for final design
moment, with a strain not less than 0.004 as a limit.

Compression-controlled Transition zone Tension-controlled
¢ e
0.90 ¢ = 0.75 + (¢, — 0.002)50
¢ =0.75 + 0.15[1/(c/d) - 5!3]/,/
0.85|- Spiral ,,”
\}’,
-
0.80 -
//,
-
0.75 —————— &
0.70 |-
Other
0.65 ¢ = 0.65 + (g, — 0.002)(250/3)
¢ = 0.65 + 0.25[1/(c/d) — 5/3]

€,=0.002 Net tensile strain €,=0.005

For transition region ¢ may be determined by linear interpolation:

¢ = 0.75 + (¢, — 0.002)50 — for spiral members

250
¢ = 0.65 + (¢, — 0.002) (T) — for other members

4.5 THE BALANCED CONDITION

Let us consider the case of balanced section, which implies that at ultimate load the strain in

concrete equals 0.003 and that of steel equals &; = ];—y (at distance d;).
S

¢. = 0003 0851 _L

iy R N R T
1
~4o -o-{ — —— — [ = Af,
€y fy/Es
S
O(C)’ZB= d = or cszfo.O(B
' 0.003 +E—y 0.003 +E—y

Substituting E5 = 200 000 MPa
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_ 600 g
> =600+,
From equation of equilibrium } £, = 0
T=C = Agf, = 0.85 flab
a — the depth of compressive block and equal a = f;c.
For balanced condition, a; = [;¢p.
where B; as defined in ACl 10.2.7.3 equal:

B1 = 0.85 —0.007(f, — 28) 0.65<p, <0.85
The reinforcement ratio for tension steel
As . , (As)b
p= b and balanced reinforcement ratio p, = d
A ! 600
Wy _ g5 L2 p, 000
bd fy 600+ f,
B fe 600
pp = 0.85 fyﬁ1 600 + £,

4.6 UPPER AND LOWER (MINIMUM) STEEL PERCENTAGES.

The maximum reinforcement ratio p,,,4, that ensures a minimum net tensile steel strain of
0.004.
0.003 + ¢, 0.003 + ¢,

p (e =0.004) = 50000047 = " 0.007

Pp = Pmax

For Grade 420 reinforcing bars €, = 0.002, then

0.003 + 0.002 0.005

Pmax ="470907 P>~ 0.007""

= 0.724p,

If the factored moment applied on a beam is very small and the dimensions of the section
are specified (as is sometimes required architecturally) and are larger than needed to resist
the factored moment, the calculation may show that very small or no steel reinforcement is
required. The ACI Code, 10.5, specifies a minimum steel area, A min

VI

Agmin = 0.25 b, d
fy
and not less than
1.4
As,min = Ebwd

The above requirements of Ag ,;, need not be applied if, at every section, Ag provided is at
least one-third greater than that required by analysis (Asprovidea = 1.334As requirea)- This
exception provides sufficient additional reinforcement in large members where the amount
required by the above equations would be excessive.

b,, — width of section, width of web for T-section, mm.
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4.7 SPACING LIMITS AND CONCRETE PROTECTION FOR REINFORCEMENT.

The minimum limits were originally established to permit concrete to flow readily into
spaces between bars and between bars and forms without honeycomb, and to ensure
against concentration of bars on a line that
may cause shear or shrinkage cracking.

According to ACI 7.6. The minimum clear

spacing between parallel bars in a layer
@ © @ @

@ o o @ @ o

No Yes
Arrangement of bars in two layers (AC| Section 7.6.2).

shall be dj, but not less than 25 mm.

Where parallel reinforcement is placed in

two or more layers, bars in the upper
layers shall be placed directly above bars in
the bottom layer with clear distance between layers not less than 25 mm.
In addition, the nominal maximum size
of coarse aggregate shall be not larger
than:

(@) 1/5 the narrowest dimension

>40 mmy | >40 mm

between sides of forms, nor
(b) 1/3 the depth of slabs, nor
(c) 3/4 the minimum clear spacing between individual reinforcing bars or wires, bundles

$>40 mm

of bars, individual tendons, bundled tendons, or ducts.

Concrete cover as protection of reinforcement against weather and other effects is
measured from the concrete surface to the outermost surface of the steel to which the
cover requirement applies. Where concrete cover is prescribed for a class of structural
members, it is measured to the outer edge of stirrups, ties, or spirals if transverse
reinforcement encloses main bars. According to ACI, 7.7, minimum clear cover in cast-in-
place concrete beams and columns should not be less than 40 mm.

To limit the widths of flexural cracks in beams and slabs, AClI Code Section 10.6.4 defines
upper limit on the center-to-center spacing between bars in the layer of reinforcement
closest to the tension face of a member. In some cases, this requirement could force a
designer to select a larger number of smaller bars in the extreme layer of tension
reinforcement. The spacing limit is:

280 (280 280)
S =
fs fs

where C,. is the least distance from surface of reinforcement to the tension face. It shall be

) —25¢C, but s< 300(

permitted to take f; as gfy.

4.8 ANALYSIS OF SINGLY REINFORCED CONCRETE RECTANGULAR SECTIONS FOR
FLEXURE.

Given: section dimensions b, h; reinforcement Ag; material strength f¢, f,,.
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Required: M,, — Nominal moment strength.

T=C = Agf, = 0.85 flab = a =%
. c
e rlo-2)-co-9
M, = Af, (d _%) or M, = 085 fab (d —g)

Example:

Determine the nominal moment strength of the
beam section. Take f; = 30 MPa, f,, = 420 MPa.

Solution: 12 &J18
A, (122 18) = 30.536 cm? = 3053.6 mm? 00000000000

320 mm

_ Asf, 30536 1420 cc g
= 085fb 085-30-900 > >°°M ) b = 900 mm .

18
d=320—40—10—7=261mm

a 55.88 i
M, = Asf, (d - E) = 3053.6 - 420 (261 - T) .10 = 2989 KN - m

Check for strain:

d—c
eS=0.003< )

C

a
=g B, = 0.85 — 0.007(f! — 28) = 0.85 — 0.007(30 — 28) = 0.836

1

_5588 _
€= 0836 Ooormm
— 0.003 (261 — 66'84) = 0.00871 > 0.005

&= 6684 ) '

Take ¢ = 0.9 for flexure
¢M,, = 0.9-2989 = 269.01 KN -m

4.9 DESIGN OF SINGLY REINFORCED CONCRETE RECTANGULAR SECTIONS FOR
FLEXURE.

Given: M,, — factored moment (M,, < ¢M,,); material strength f, f,,.

Required: section dimensions b, h; reinforcement A;.
The two conditions of equilibrium are
T=C (D
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Reinforcement ratio

Substituting into (1)

pbdf, = 0.85 f,ab

_ (b
“=Pp (0.85 fg) d

pl f
MTL = Pbdfy ld - E<0835’f;:’

Substituting (3) into (2)

A strength coefficient of resistance R,, is obtained by dividing (4) by (bd?) and letting

_(_ b
me <O.85fc’

Thus

M, m
anﬁzpfy(l_

From which p may be determined

Design Procedure:

1. SetM, = ¢M, = ¢R,, bd?

(2)

(3)

(4)

)

(6)

2. For ductile behavior such that beam is well into the tension controlled zone, a

reinforcement percentage p should be chosen in the range of (40 — 60)% of p;,.

Assume p = (0.4 — 0.6)pp.

pp = 0.85 ;_;.31<

3. Find the flexural resistance factor R,

Ry =pfy(1_%);

4. Determine the required dimensions b, d

M
bd? ==
Ry

26
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5. Determine the required steel area for the chosen b, d

A = pbd
Where
1 2mR M
p=—|1- [1- , Ry =, e fy
m fy bd 0.85f/
6. Check for minimum steel reinforcement area
JE, 14
Agmin = 0.25 f”b d>— 3 b,,d
Or
JE
Pmin = 0.25
min fy fy
If As,provided 2= 3 As ,required NO need to use As,min

7. Check for strain (¢, = 0.005) — tension-controlled section.
8. Check for steel bars arrangement in section.

Example:
Calculate the area of steel reinforcement required for the beam. M,, = 360 KN - m
Take f; = 30 MPa, f, = 400 MPa.

Assume J 25 with one layer arrangement.

Solution:
] Obar 25
d = h — cover — Jstirrups — 5 = 650 — 40 — 10 — -5 = 587.5 mm
Take ¢ = 0.9 for flexure
M, M, 360 - 10°
R, = = = = 3.86 MPa

bd? ¢bd? 0.9-300-587.52

650 mm

h =

400
m=< Iy >= = 15.69

0.85f) ~ 0.85 30
b =300mm |
1 2mR, 1 2-15.69 - 3.86 :
) N T A 7] e T = 0010

Ag = pbd = 0.0105 - 300 - 587.5 = 1850.625 mm?

Agmin = 025‘/f_c b,d > 4de
fy fy
V30
Agmin = 02555300 - 587.5 = 603.35 mm?
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1.4
Ag min = m300 -587.5 = 617mm? — control

Ay = 1850.625 mm? > Ag i = 617 mm? — OK
Use 4 & 25 with A;(4 & 25) = 19.634 cm? > Agyeq = 185cm*  — 0K

Check for strain:
Asfy B 1963.4 - 400

= = = 102.
@ =085 b 085-30-300 L0x66mm
a
=5 B, = 0.85 — 0.007(f! — 28) = 0.85 — 0.007(30 — 28) = 0.836
1
_ 10266 _
€= 0836 _ coCmm

d—c 587.5—122.8
& = 0.003 (T) = 0.003( 1778 ) = 0.01135 > 0.005 OK

Check for bar placement:

300—40x2—-10x2—-4x25
b:
3

=33.33mm >d, =25mm, >25mm OK

Example:

Select an economical rectangular beam sizes and select bars using ACI
strength method. The beam is a simply supported span of a 12 m and it
is to carry a live load of 20 KN/m and a dead load of 25 KN/m
including beam weight.

Take f/ = 28 MPa, f, = 400 MPa.

Assume d = 2b

Solution:
w, = 1.2DL + 1.6LL =1.2-25+ 1.6-20 = 62 KN/m
wyl? 62122
My = Mpax = —g—=—2—=1116 KN -m )

Take ¢ = 0.9 for flexure as tension-controlled section
Assume p = 0.4p,,.

Take 8, = 0.85 (f, = 28 MPa)
! 600

600 28
=085 28, (————) =085 —0.85 (—) = 0.030345
Po b <600 n fy) 200 > \600 + 400

p = 0.4p, = 0.4-0.030345 = 0.012138

_ (L —( 400 )—16807
m=\ossr/) " \o85-28/ "

m
Rn=pfy (1- pT) = 0.012138 - 400 (1 -

0.012138-16.807
2

) =4.36 MPa
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pp o M _1116°10° L a1tee08
= = = - = _— = .
OR,  0.9-4.36 4-0.9-4.36 mm

Take b = 400 mmandd = 2b = 2-400 = 800 mm

M, _ 1116-10°
~ ¢bd?  0.9-400 - 8002

R, = 4.84 MPa

= 0.01367

_1f, [ _zmRa) 1 2-16.807 - 4.84
P=m 5, |~ 16807 400

Ag = pbd = 0.01367 - 400 - 800 = 4374.54 mm?

Jr 1.4
Asmin = 025=b,d 2 —b,d
y y

V28
Agmin = 02555400 - 800 = 1058.3 mm?

1.4
Agmin = méLOO 800 = 1120 mm? — control

Ag = 437454 mm? > Ag pin = 1120 mm?* — OK
Take 4 & 28 + 4 O 25 in two layers with
As = 24.63 +19.635 = 44.265 cm® > Agpoq = 43.74cm?* — 0K 4 3

Check for strain:

Asf, 44265 -400

= 085fb 085 28-400 mm <
_a _18599 .
c =% = 085 81mm

d—d+5+db—800+25+28—8265
= ATy T g T T ocbomm

di —c 826.5 —218.81
) =0.0 3(

= 0.003
& ( 218.81

) = 000833 > 0.005  OK

Check for bar placement:

s 400 —40x2—-10x2—-4x 28
b:
3

= 62.67mm>d, =28mm, >25mm OK

d 28
h=d, + 7b + Jstirrups + cover = 826.5 + > + 10 + 40 = 890.5 mm

Take b = 400 mm and h =900 mm.

Example:
The beam shown below is loaded by service (unfactored) dead load of 45 KN /m and service
live load of 25 KN /m. Design the beam for flexure given the following information:
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f¢ =24 MPa, f, =420 MPa.
Assume the depth of the beam h = 32 cm

Use bars & 16

4, 4,
o
oA
AN
onyY
— —
a a
/] |
4m 2m
< :l: >
. a-a
Solution: — .
wp =1.2-45=54KN/m g
w, =1.6-25 = 40 KN/m <
Determination the maximum positive and negative |, b -

bending moments for the beam:
e Maximum positive bending moment.
w, =40 KN/m

IR EREERENNERRRRRER

T VYV VPV VY VYV VYV VYV VY VY h VY VYV YYYY

> B
A
< 4m ot 2m >
108 KN -m
. 1713m
My max = 137.88 KN - m
~+NMp=0, A, -4—94-4-2+54:2:1=0 A, =161KN

Location of Maximum positive moment at distance x from support A from condition of zero

shear force.
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V(x)=0, 161—94-x=0

1.71
Mymax = 161+ 1.713 — 94 - —

2

2
Mp = —54-—=—108 KN -m

x=1713m

2
=137.88 KN -m

e Maximum negative bending moment.

wp =54 KN/m

w =94 KN/m
YYY YY VY VY
=|161 KN |4
X >
w, =40 KN/m

IR RER RN

Yy V wl)Mu,max
]

OO o e

A

A
188 KN -m
wl? 94 - 22
Mumax:__:_ = —188KN - -m
’ 2 2
A Ay
A
The maximum moments 4m 2m

from all cases (envelope):
Mive,, =137.88 KN -m
My Ve = 188 KN -m

188 KN - m
10§/KN \m
1.713 m
/ My ez = 188 KN -m
M}ve,. =13788KN-m
13788 KN -m
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Determination of the beam width b and Design for negative moment M,, = 188 KN - m

Take ¢ = 0.9 for flexure as tension-controlled section

Assume p = 0.4p,.

Take 8, = 0.85 (f. = 24 MPa)
fC 600

p=0.4p, = 0.4 0.02429 = 0.01

600

420
(2 ( ) = 20.6
0.85f/) — \0.85- 24
pm 0.01-20.6
n=pf(1- T) = 0.01 - 420 (1 - T) = 3.767 MPa

. bar 16
d = h — cover — Jstirrups — > = 320—-40—-10— - = 262 mm
par = M _ 188107 ) a2 po 8810 g
— — = . - = = .
OR, 09-3.767 0.9-3.767 - 2622 mm
Take b = 900 mm
p oo Mo __18810°
"= Bbd?2  0.9-900-2622 ¢
(|, _zmRa\_ 1 [ | 2:206-338)
P m 5, |~ 206 420 -
A, = pbd = 0.0089 - 900 - 262 = 2099 mm?
JE 14
Agmin = 0.25 fcb d> fyb wd
Nz

Agmin = 0.25,>5900 - 262 = 688 mm’

420
Ay = 2099 mm2 > Agpmin =

As,min =

Take 11 & 16 in one layer with Ag =

Check for strain:

4
900 - 262 = 786 mm?

786 mm?

— control

— 0K

2211 cm?* > Agpeq = 2099 cm*  — 0K

. Asfy _ 2211420 — 50.6mm
0.85f/b 0.85-24-900
a 50.6

C:ﬁl 085—595mm

d—c 262 — 59.5
& = 0.003 (T) = 0.003 (—) = 0.01 > 0.005

OK

59.5
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Check for bar placement:
- 900-40x2—-10x2—-11x16

b 10
Design for positive moment M,, = 137.88 KN -m
M,  137.88- 106

=624 mm > 25mm OK

Rn = $paz = 09900 2622 ~ 48 MPa
_1f, [ _2mRa) _ 1 2:206-248\ _
P=m 5 |~ 206 420 -

A, = pbd = 0.0063 - 900 - 262 = 1486 mm?

Agmin = 786 mm?

Ay = 1486 mm? > Ay i = 786 mm? — 0K

Take 8 & 16 in one layer with A; = 16.08 cm? > Ag,.q = 14.86 cm*  — 0K

Check for strain:

a= Asly = 1608 - 420 = 36.78 mm
0.85f/b 0.85-24-900
a 37

C=E=ﬁ=43.28mm

d—c 262 —43.28
& = 0.003 (T) = 0.003 (W) = 0.0152 > 0.005 OK

Check for bar placement: S, >25mm  OK

1 2
— -
- K
T.B. 1116 51
B.B. 8716 |
y
1 2
/] |
- 4m | 2m
- >l >
1-1 2-2
A
g 11016 g
Q Q
N [\
o e e o
Y
90 cm . . 90 cm .
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4.10 DOUBLY REINFORCED CONCRETE SECTIONS (SECTIONS WITH COMPRESSION
REINFORCEMENT).

Flexural members are designed for tension reinforcement. Any additional moment capacity
required in the section is usually provided by increasing the section size or the amount of
tension reinforcement.
However, the cross-sectional dimensions in some applications may be limited by
architectural or functional requirements (architectural limitations restrict the beam web
depth at midspan, or the midspan section dimensions are not adequate to carry the support
negative moment even when tensile steel at the support is sufficiently increased), and the
extra moment capacity may have to be provided by additional tension and compression
reinforcement. The extra steel generates an internal force couple, adding to the sectional
moment capacity without changing the ductility of the section. In such cases, the total
moment capacity consists of two components:
1. moment due to the tension reinforcement that balances the compression
concrete, M,,., and
2. moment generated by the internal steel force couple consisting of
compression reinforcement and equal amount of additional tension
reinforcement, M, as illustrated in figure below.

. €., = 0.003 0.85f
Compression face [ —]
\\\ﬁ\}\\kld’ _f_e_’_7 13_3 d’ C, = Allf;—0.85f)
N \ L . ¥ _==Ta7 c,=085Fab
nd =
Aconc
eoeoe z —=T= AL -
Tension b—
face
{a) Cross section (b) Strain diagram (c) Stress diagram (d) Moment carried as  (e) Moment carried by
a singly reinforced the compression
beam, M, steel, M,
Notation:

€ — strain in compression steel.
fs = Egeg < f, — compression steel stress
A; — area fo compression steel

d' — distance from extreme compression fiber to centroid of compression steel
A
bd

Ag. — part of the tension steel that match C..

compression steel reinforcement ratio.

C. — concrete compression resultant for a beam without compression reinforcement.

C, — compression steel resultant as if A; were stressed at (f; — 0.85f,).
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4.10.1 Analysis of doubly reinforced concrete sections

' 085 _L 0851 ¥
- 7 i
! %‘""’T"‘" TT %—d 3 // l Jn 7 RSl
T = BT ] e
A ! |
— o= l_l e L 2 ' g+ %
' 2
Z
As Af‘ A-‘z
—e o8 — - +—o—o—— —-| — 1 ——
T=Af, Ty = Ay, o= Ayf,
e
€sy = 0.003
> Compression steel is yielded _ [+—>]
4 /
Compression steel is yielded when &5 > g = f—y & e
ES d L
= 0.003 (=% =2
g =0. . , c= B
' €s
A = A — Agy, Ay = A
a , a
T, = Aslfy = C; and M, = Aslfy (d - E) or My, = (As — As)fy (d - E)
where a = Aslfy _ (As - Als)fy _ é r A_;
0.85f/b  0.85f/b P=bd P = bd
a (As - Als)fy (p - pl)fyd
substituting "a" into ¢=—= == -
B1 B1-0.85f/b f;-0.85f,
d’ 0.85B,f.d’
substituting "c" into  &f = 0.003 (1 — —) =0.003 [1 - #]
c (p — pHdfy
Compression steel is yielded when
g2 & = g—y
N
0.85B,f/d’
0.003 |1 — ﬁl,fc > y
(p —p"df,| — Es = 200000 MPa
or in the form
' 0.85f/d’ ( 600 >
p—p =
df, "'\600-f,
p= p_cy
" _ 0.85f/d’ 600 Ly
= *

Pcy — minimum tensile reinforcement ratio that will ensure yielding of compression steel at

failure.
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In the previous equation of p., was ignored that part of the compression zone is occupied by
the compression reinforcement, the value of ignored compressive force is A%(0.85f,"). So

the depth of stress block can be expressed

N As(f, — 0.85f,")

0.85f.'b ’
and
B 0.85f/d’ < 600 ) 0.85f;
Pey = +p'(1-
cy dfy 1 600 — fy ( fy )

In all calculations, the equation (*) for p, will be used.
T=Afy=C+C=T,+T,
C. = 0.85f/ab, Cs = As(f, — 0.85f,)

_ Asfy — As(fy — 0.85£)
0.85f.'b

Asf, = 0.85f/ab + A5(f, — 0.85f,) from where a

The nominal moment strength for rectangular section with tension and compression steel is

yielded

My = (Asfy — 4i(f, — 0.85£")) (d = 5) + 44(fy — 0.85£.")(d - d),

or M, = 085f/ab (d - %) + A4(f, — 0.85£")(d — d”).

For simplicity, A%(0.85f.") can be ignored and then:

(As - A;)fy

T = Asfy = CC + CS = T1 + TZ: CC = 0'85f6’abl CS = A,sfy a= 085]‘;"19

My = (4, — A4, (d - g) + Ayf,(d — d") = 085f ab (d - g) + AL, (d — d')

> Compression steel is NOT vielded

Compression steel is NOT yielded when

f;
g < g = E_y or fi = &Eg <fy or p < Pey

N

!/ C_dl
fs’=€;ES=0.003< p >200000=600< p )

T=Af,=CctCo=T +T,
C. = 0.85f/ab, C, = AL(f) — 0.85f))
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Agf, — AL(fy — 0.85f.'
Ay = 085fab + A~ 085F7) from where a="L SN g,
" c

aw_n ( 12

Note that in the above equation two unknowns “c” and “f;”. Substitiuting f; = 600 (C_Cd')

in “a” we get an quadratic equation in “c”, the only unknown, which is easily solved for “c”.
The nominal moment strength for rectangular section with tension and compression steel is

NOT yielded

My = (Asfy — A(f - 0.85£)) (d = 5) + A4(f - 0.85£)(d — &),

a
o M, = 0.85fab (d - E) + AL(f — 0.85£)(d — d").

For simplicity, A5(0.85f.") can be ignored and then:

_ Asfy - A,sfs,

T=Afy=C+ C=T +T,, C.=0.85fab, Cs = Asfs’ 0.85f.'b

My = (Acfy = 45f) (4 = 5) + AL (d — @) = 0.85f/ab (d = 3) + A4fy'(d - &)

For both cases (compression steel is yielded and is NOT yielded) &5 = 0.005 (tension-
controlled section).

Example:
Determine the nominal positive moment strength of the _¢_ 1
section of rectangular cross sectional beam. The beam is £ ® 2020 @
reinforced with 4 & 32 in the tension zone and 2 & 20 in the é g
compression zone. J g
Take f/ = 20 MPa, f, =400 MPa. © g
I

Solution: E
As(4 D 32) = 32.17 cm? o 4.® 3.2 ol —
AL(2 @ 20) = 6.28 cm?

Ag 3217 b = 350mm
P=Dd 350 682 0134 X i

. Ag 628

p :w:—350-68420'0026' B = 0.85,

__ossfd (600 ,_0.85-20-63085( 600 >+00026_001258
Py =—qr Filgoo—7,) ¥ = esa-a00 °°>\6oo—a00) T 0026 =0

p = 0.0134 > p., = 0.01258 compression steel is yielded (g5 > &)

T = Agsfy = Cc + C
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Agfy, = 0.85f/ab + A;(fy — 0.85f/) from where
 Asf, — A(f, — 0.85£) 3217 - 400 — 628 - (400 — 0.85 - 20)

= 175.84 mm,
0.85f,b 0.85 - 20 - 350 mm
_a 17584
T8 T 05 _cooemm

M, = 0.85f/ab (d - 5) + 4i(f, — 085£)(d — d) =

175.84
= [0.85 +20-175.84-350 (684 — ) + 628(400 — 0.85-20)(684 — 63)[ x 1076 =

= 773.01 KN - m
Check for & > 0.005:
d— c> .\ (684 —206.88

= 0,003 (—= ) = 000691 > 0.005  OK
&s ( c 206.88

Take ¢ = 0.9 for flexure as tension-controlled section.

¢M,, = 0.9-773.01 = 695.71 KN -m

Example:

Repeat the previous example using f. = 30 MPa.

Solution:

_ 0.85f/d’ 600 v 0.85-30-63 ) 836( 600 ) + 0.0026 = 0.0173
Por =af, P1\e00—£,) TP T T684-400 " \600—400) T T

p = 0.0134 < p., = 0.0173 compression steel is NOT yielded (&5 < g),)
T = Asfy = C. + Cs

-d
fs§ =600 <C p ), B1 =0.85—0.007(f, —28) = 0.85 —0.007(30 — 28) = 0.836

Agfy, = 0.85f ab + As(fy — 0.85f,) from where
_ Asfy = A4(f — 085£") _

0.857.b 1€
3217 - 400 — 628 - (600 (“— 63) ~ 0.85-30)
< =0.836¢
0.85-30 - 350
2659.764 ,
103.755 + ———=0.836c, = 0.836c” —103.755 c — 2659.764 = 0,
. . . —b +Vb? — 4ac
solution of quadratic equation X12 = a

c* —124.109 ¢ — 3181.536 = 0,
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124.109 + \/124.1092 —4-1-(—-3181.536) 124.109 + 167.718
C1,2 = =
2 2
Choose only ¢ > 0, c = 14591 mm
a = f;c=0.836-145.91 = 121.98 mm,

N dy ¢ (145.91 - 63
fs = c | 145.91

) =340.94 MPa < f, = 400 MPa,

M, = 0.85f!ab(d - %) +AL(f — 0.85£.))(d — d') =

121.98
= [0.85 +30-121.98-350 (684 — > + 628(340.94 — 0.85-30)(684 — 63)] x 107 =

=801.27 KN -m
Check for &5 = 0.005:

d—c 684 — 145.91
) = 0.003 (—

= 0.003(—— ) =0.011 > 0.005 OK
& ( c 145.91

Take ¢ = 0.9 for flexure as tension-controlled section.

¢M,, = 0.9-801.27 = 721.14 KN -m

4.10.2 Design of doubly reinforced concrete sections.

When the factored moment M,, is greater than the design strength ¢ M,, of the beam when
it is reinforced with the maximum permissible amount of tension reinforcement,
compression reinforcement becomes necessary.

The logical procedure for designning a doubly reinforced sections is to determine first
whether compression steel is needed for strength. This may be done by comparing the
required moment strength with the moment strength of a singly reinforced section with the
maximum permissible amount of tension steel p,,qx-

For example, for steel Grade 420 pPpax = 0.724p, which

0.003
defined from strain conditon &, = 0.004 for beams. 1 | t 1
c d; 3 L:, /i
0003 0003+0004  CT7% e=he Y/
The maximum moment strength as a singly reinforced section i S| I
a |
My max = 0.85f ab (d — E)'
If My, > ¢M,, mar Design the section as doubly reinforced : i
section, 5";__5—"_ y
g; = 0.004

250
where ¢ = 0.65+ (0.004 — O.OOZ)T = 0.817 = 0.82
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Example:

The beam is loaded by a uniform service DL =25 KN/m and a uniform service
LL = 35 KN /m. Compute the area of steel reinforcement for the section.

Take f; =20 MPa, f, =400 MPa.

Assume d' = 60 mm, and one layer arrangement of tension steel.

t A
g
S
3 S
I §
45 m S 5
ma [
=
Solution: |
w, =12D 4+ 1.6L =1.2-25+1.6-35 =86 KN/m
wyl?  86-4.52 b = 250 mm
My = My = = =217.7KN -m < >

8 8

Maximum nominal moment strength from strain condition &, = 0.004
3 3

c= ;d = ;410 = 175.7 mm, B = 0.85

a=f;c=085-175.7 = 149.4 mm
My max = 085 ab (d — %) = 0.85- 20 - 149.4 - 250 (410 - 12&) x 1076 = 212.9 KN - m
¢ =0.82
M, = 217.7KN -m > ¢M,, = 0.82-212.9 = 174.6 KN -m
Design the section as doubly reinforced concrete section.
M, 217.7

Mns =?_Mnc = m— 2129 =5259KN -m

— N — A ’ / ’ 1 Mns
Mps =Cs(d —d") = As(fs' — 0.85f.)(d—-d") = As=

(f' —0.85£.")(d — d")

c— d’> 175.7 — 60
—6 (—

' — o0 (=L — 395.1 MP = 400 MP
£ 600< - Ny ) 395.1 MPa < f, = 400 MPa,

Compression steel does NOT yield

M, B 52.59 - 106
(. —0.85£)(d —d")  (395.1 — 0.85-20)(410 — 60)
T =C,+ C, = 0.85f/ab + AL(f; — 0.85f,") =
= [0.85-20 - 149.4 - 250 + 397.4(395.1 — 0.85 - 20)] x 10~3 = 785.21 KN
T 785.21-103

Ag=—="2 " —1963.02 mm?
7%, 400 i

A, = = 397.4 mm?
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Example:
The beam section shown below is loaded by a factored bending )
moment M,, = 520 KN - m. Design the beam for flexure given the
following information:

fi = 24 MPa, fy = 400 MPa. §
Use bars 25 mm, and assume one layer arrangement of tension §
steel. I
Solution: =

Check whether the section will be designed as singly or doubly: —

Maximum nominal moment strength from strain condition

g = 0.004 b =350mm
3 3
¢ ==d =500 = 214.29 mm, B, = 0.85

a=pc=085-214.29 = 182.14 mm
82.14

a 1
M, max = 0.85f;ab (d — E) =0.85-24-182.14- 350 (500 - ) X 107® =531.81 KN m

¢ = 0.82
M, =520 KN -m > ¢M, = 0.82-531.81 = 436.1 KN -m

Design the section as doubly reinforced concrete section.

M, 520
Mns = ?— nc — @— 531.81 = 102.34 KN - m
_ N Al 1 l; ’ r Mns
My, =C,(d—d") =A,(f;,' —085f.)(d—-d") = A, =

(f;' —0.85£."Y(d — d")

) Dbar 25
d' = cover + Jstirrups + — = 40+ 10 + > = 62.5 mm

c—d 214.29 — 62.5
fs§ =600 — =600( 21429 >=425MPa>fy=4OOMPa,

Compression steel is yielded. Take f/ = f,, = 400 MPa
M, 102.34 - 108
(f, — 085£.)(d—d) (400 — 0.85 - 24)(500 — 62.5)
T =C,+ Cs = 0.85f/ab + Ay(f, — 0.85f.") =
=1[0.85-24-182.14- 350 + 616.23(400 — 0.85 - 24)] X 1073 = 1534.4 KN
A = T _ 1534.4 - 103
Sk 400
Take 8 & 25 in two layers with A = 39.27 cm? > Ag,eq = 3836 cm?  — 0K

= 616.23 mm?

A =

= 3836 mm?

Take 2 & 25 in one layer with Ay = 9.817 cm? > Aj,eq = 6.16 cm*  — OK

Now it’s an analysis problem of doubly reinforced concrete section.
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Check whether compression steel has yielded:

A 3927 }
p=—"=—"— =0.02244 22259
bd ~ 350500 §
A 9817 0.00561 = 0.85 p
P = bd ~350-500 ’ Br =085, b
_0.85f/d’ ( 600 > , .
Pcy = B1 — tp = =
dfy = \600—4, 8.2 25

0.85-24-62.5 600 L o
- 0.85 (—) +0.00561 = 0.02187 t e o j

500 - 400 600 — 400
p = 0.02244 > j, = 0.02187

compression steel is yielded (eg > &y)

Check for & = 0.005:

T=Asf,=C.+C = Asf, = 0.85f ab + Ay(f, — 0.85f’) from where
_ Asfy — As(f, — 0.85£,")  3927-400 —981.7 - (400 — 0.85 - 24)

0.85f.'b 0.85 - 24 - 350 = 167.81 mm,
a 167.81 s d, 25
c=E= 085 = 197.42 mm, dt=d+§+7=500+7+7=525mm
d, —c 525 — 197.42
g = 0.003( ) = 0. (W) = 0.00498 < 0.005

When 0.004 < & < 0.005 (in transition zone between compression-controlled section and
tension-controlled section), it is obvious here that the nominal moment strength of the
section will satisfy the strength condition ¢M,, > M,,, where 0.82< ¢ <0.9.

This step is a proof of the above statement.

250
¢ = 0.65 + (0.00498 — 0.002) = = 0.8983 > 0.82 — as was used

a
M, = 0.85f/ab (d - E) + AL(f, — 0.85£.))(d — d') =

2
= 661.59 KN -m

¢M, = 0.8983-661.59 =594.31 KN-m > M, =520 KN-m

1
= [0.85 +24-167.81- 350 (500 -

4.1 REINFORCED CONCRETE FLANGED SECTIONS (T- AND L- SECTIONS).

It is normal to cast concrete slabs and beams together, producing a monolithic structure.
Slabs have smaller thicknesses than beams. Under bending stresses, those parts of the slab
on either side of the beam will be subjected to compressive stresses, depending on the

42
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position of these parts relative to the top fibers and relative to their distances from the
beam. The part of the slab acting with the beam is called the flange. The rest of the section

is called the stem, or web.

T beams
b |
‘ I
h d
¥ As
——4e-o-o
D, —

Spandrel or
edge beam ™

Beam

Construction
joint \Girder

b
r g
| sofevee | V. /.
S TR F A2
Compresslon zone —___ Tension reinforcement
.L.l

(b) Section A-A (¢} Section B-B (d) Section A-A

(rectangul_ar {negative moment). (T-shaped

compression zone). compression zone).
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4.11.1 Effective width.

The ACI Code definitions for the effective compression flange width for T- and inverted
L-shapes in continuous floor systems are illustrated in figure below.

le be | be |
™ — t h ; >
|
DN AR W T
\ hl d \ } Flange |
& y - k Web
by
<P <2
b, + (clear transverse span)/2 | by + 2 X (clear transverse span) /2 = total trans. span |
be={ b,+6h f by<{ by+2(8h) |
by + €12 | el |
- | rh - - i
N | D i
|_b"’ ; (clear tranv. span)/2 I (clear tranv. span)/2 _u_b“’_u (clear tranv. span)/2 _!
Midlspan ] ) Midlspan
Transverse span Transverse span

£ = length of beam span (longitudinal span)
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For T-shapes, the total effective compression flange width, b,, is limited to one-quarter of
the span length of the beam (L), and the effective overhanging portions of the compression
flange on each side of the web are limited to

(@) eight times the thickness of the flange (slab), and

(b) one-half the clear distance to the next beam web.

The ACI Code, 8.12.2, prescribes a limit on the effective flange width, b, , of interior
T-section to the smallest of the following:

L
(a) be < Z
(b) b, < by, + 16k

1
(¢) b, <bh, + > the clear distance to the next beam web from both sides

For symmetrical T-section (the clear distance to the next beam web from both sides is the
same ) the previous (c¢) will be
(c¢) b, < Center to Center spacing between adjacent beams

For inverted L-shapes, the following three limits are given for the effective width of the
overhanging portion of the compression flange:

(a) one-twelfth of the span length of the beam,

(b) six times the thickness of the flange (slab), and

(c) one-half the clear transverse distance to the next beam web.

The ACI Code, 8.12.3, prescribes a limit on the effective flange width, b, , of exterior
T-section (L-shape) to the smallest of the following:

L
(a) b, <b, + 1
(b) b, < by, + 6hs

1
(¢) b, <b, + > the clear distance to the next beam web.

Isolated beams, in which the T-shape is used to provide a flange for additional compression
area, shall have a flange thickness (ACl 8.12.4)
(a) b, < 4b,

1
(b)) t= Ebw

4.11.2 Analysis of T-sections.

The neutral axis of a T-section beam may be either in the flange or in the web, depending
upon the proportions of the cross section, the amount of tensile steel, and the strength of
the materials.
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il b, | i b, .
7z wewa | W ///////
d T_: : axis d TM——: ~— - ——1 Neutral
| | | | axis
}..._ - —o— I j—{— -9-0-9- ]|
by k- by
Procedure of analysis:
1. Assume that T-section is a rectangular section with total b, width.
A
T=C = Asf, = 0.85 flab, = a=3 855?,19
" cve
2. Compare a with hy — the thickness of flange.
Here may be TWO CASES:
Case |: a < hy analyze as rectangular section.
C i a/2
L ; Ty oosy p ost §
I ) - =t
r NA )
d C = 085lab, ?
L |
— —— o _._.___.._-_-—-——*. ..—.—-—»J.—
F=Ad,
a a
M, = Asf, (d - E) or M, = 0.85 fab, (d - E)
0.85 f, ab,
A =——
S fy
Case ll: a> hf analyze as T-section.
| (be-b)2 | | | (b— b2 M2 a2
& b, y * LT P ' § o8 4 085f! JL
n ¥ h W : h B - 11 =
o N TN ' ' < T T |¢
. = | 5+ ||, B
—LAﬂJ | _w——_—————_m——%@ﬁ—- ------ S S -l I B
f sf 1y Th’:-‘qswfv

1. My, = My + My,
where M, — Moment capacity of the T-section,
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M, ; — Moment capacity of the flange,
M,,,, — Moment capacity of the web.

he , hy
2. Mnf = Asffy d— 7 = 0.85 f; (be - bw)hf d— 7
_ 0.85 f, (b, — bw)hf

Tf = Cf = Asffy = 0.85 ﬁ;’(be - bw)hf = ASf fy
a , a

3. My, = Ay f, (d—E) =0.85fcbwa(d—§), Agy = Ay — A

T, = C, = Az f, =0.85f/b,a — a:AS—ny

w w swJy c”w 0.85 f'CIbW

hf a
M, = Ayf, <d - 7) + Agfy (d - E)
) hy , a
or My, = 085 f (b, — by)hy (d =) + 085 f/b,a (a- E)

4. Check for strain &5 = 0.005.

4.11.3 Minimum reinforcement of flexural T-section members.

Ag min for T-sections is as in 4.6 (page 23).

For statically determinate members with a flange in tension, ACI Code, 10.5.2., as in the case
of cantilever beams, A,y shall not be less than the value given by equations in section 4.6
(see page 23), except that b,, is replaced by either 2b,, or the width of the flange,

whichever is smaller.

4 !
smin — M b,d, Asmin = M
’ fy ’ fy
According to ACI code, 10.6.6, where flanges of T-beam construction are in tension, part of
the flexural tension reinforcement shall be distributed over an effective flange width as
defined in 8.12, or a width equal to one-tenth the span, whichever is smaller. If the effective

flange width exceeds one-tenth the span, some longitudinal reinforcement shall be provided

bd.

in the outer portions of the flange.

4.11.4 Analysis of the positive-moment capacity of a T-section.

e b L
| |
I Y r . 1 s e ]
Compression zone —___
Pi-l
Midspan section Support section
Positive moment Negative moment
(Compression in flange) (Compression in web)
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Example:
Calculate the design strength ¢M,, for one of the T beams in the positive moment region.

The beam has a clear span of 7 m (face to face).
fi = 28 MPa, fy = 420 MPa.

. ——
F T T |
“ ooy
A A
] ]
I~
T 6
-
b ' o
t——71.8 M——»te——18m . 1.8m
(a)
% €
75 mm !‘ s 5 [

e } by
..... o000 | 4 &y 25 : st -4 25 — - Jessed- 4025
—] e——————1.5m > - 1.5m———m—mm—» |
300 mm 300 mm 300 mm

(b)

Solution:
From the Geometry of T-section:

b, = 300 mm, h = 600 mm, t = hf =75mm
A,(4D 25) = 1963.5 mm?

b, is the smallest of:

@ b _L_7000 _
a) bp<sg=——= mm,
(b) b, < by, +16hs =300 + 16 - 75 = 1500 mm, — control

(c) b, < Center to Center spacing between adjacent beams = 1800 mm.
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Take b, = 1500 mm.

T

~
(=]
3

(ONO)
SR I R P
300
Asf,  1963.5 -420

a = 23.1mm <hf=75mm

~0.85f/b, 085 -28-1500

The beam section will be considered as rectangular with b = b, = 1500 mm.

25
d =600 - 40 — 10 - = = 537.5 mm

a 23.1
M, = Asfy (d =) = 1963.5 - 420 (537.5 _ T) x 1076 = 433.74 KN - m
Check for strain g = 0.005

a 231
c :E:E: 27.18 mm, ﬁl = 0.85
d—c 537.5—-27.18
& =0.003 (T) =0 003< 5718 ) = 0.0565 > 0.005 OK

Take ¢ = 0.9 for flexure as tension-controlled section.

M, = ¢M, = 0.9 - 433.74 = 390.37 KN - m

Example:

Determine the positive moment capacity of the edge L-section beam. The beam has a clear
span of 6 m (face to face).

f! =20 MPa, fy =400 MPa.

o
S |
A
! <
A ]
o
[Tp]
6 D32 "
00 | 00
300 | 2200 e300 |

Solution:
From the Geometry of T-section:

49



Reinforced Concrete | Dr. Nasr Abboushi

b, = 300 mm, h =670 mm, t =hr =120 mm
A, (6 32) = 4825.5 mm?

b, is the smallest of:

L 6000
(a) b, <b,, + 2= 300 + BV 800 mm,  — control

(b) b, < b, + 6hy =300+ 6-120 = 1020 mm,
1 0
(¢) b, <b, + > the clear distance to the next beam web = 300 + — = 1400 mm.

Take b, = 800 mm.
Checkif a > hy

_Asfy 48255 -400
©0.85f/b, 0.85 -20-800

a = 14193 mm > hf =120 mm

The beam section will be considered as L-section with
b, = 800 mm. - 800
B 0.85 £, (b, — bw)hf B

Ay fy an //
_ 0.85 -20(800 — 300)120 y f

_ 2
200 = 2550 mm

Agy = As — Agp = 4825.5 — 2550 = 2275.5 mm? 6 32
OO
Agyfy  2275.5-400 Y

E . — 178.47
4= 085//b, 085 -20-300 mm 300

Y

7

A

120

\

550

A, (60 32) are arranged in two layers

25
d=670—40—10—32—7=575.5mm

h’f a
My = Asgfy (d == ) + Asufy (d = 5) =

78.47

120 1
- [2550 . 400 (575.5 _ T) +2275.5 - 400 (575.5 _ )] % 106 = 968.4 KN - m

Check for strain g = 0.005 0.003

a 17847 200,96 0.65 1 1
= —_—= = . , = . &)
R mm, - fy

Cc

d—d+S+db—5755+25+32—604
t = AT T T oo T = bukmm

_ 0.003 (dt — C) _ 0.003 (604 — 209.96) _
& =1 c ) 20096 )

= 0.00563 > 0.005 OK

dy
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Take ¢ = 0.9 for flexure as tension-controlled section.

M, = ¢M, = 0.9-961.65 = 865.49 KN - m

Example:

Compute the positive desigh moment capacity of the e 600 .
T-section beam. | |
f{ =20MPa,  f, =420 MPa. IR |
Solution:
From the Geometry of T-section: 2
O
b, = 200 mm, h = 650 mm, t=hf=80mm
428
A, (4D 28) = 2463 mm? ool .
Checkif a > hy ! © Oy
Asf, 2463 - 420 200
= = = 101.42 - -
@ =085 f/b, 085 -20-600 mm
a=101.42mm > hy = 80 mm. The beam section will be considered as T-section.
0.85 f/(b, — b, )h 0.85 -20(600 —200)80
of = Jebe = bty _ ( )80 _ 1295.2 mm?
f, 420
Agy = Ag — Agp = 2463 — 1295.2 = 1167.76 mm?
Aswf, 1167.76 - 420
= = = 144.25
= 085fb, 085 20-200 mm
A, (40 28) are arranged in two layers
30
d=650—40—10—28—7=557mm
M, = agf, (d="2) A f, (a—2) =
n — sffy _7 + swfy( _E)_
80 144.25
= [1295.2 =420 (557 - 7) + 1167.76 - 420 (557 - )] x 107 = 519.05 KN - m
Check for strain g = 0.005
_a 144.25 1697 _ 085 0.003 . .
C_,B1_ 08 .7 mm, B, =0. |
d=d+o+D 55743028 ghe
c=ETyT YT 2 T e
_ 0.003 (dt - c> 0,003 (586 - 169.7) _ 5
= c )T 1697 )~
= 0.00736 > 0.005 OK

Take ¢ = 0.9 for flexure as tension-controlled section.
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M, = ¢M, = 0.9-519.05 = 467.15 KN -m

4.11.5 Analysis of the negative-moment capacity of a T-section.

Example:
Compute the negative design moment capacity of the T-section beam.
f¢ =20MPa, f, =400 MPa.

| 72 18 |

é 1 e o 0o 0 0 0 0o é

550
480

Solution:

Analyze as rectangular section because that the compression zone is within the web depth.

A (72 18) = 1781.3 mm?

B Asfy _1781.3 - 400
0.85f/b, 0.85-20-300

a = 139.71 mm

a 139.71 »
M, = Asf, (d — E) = 1781.3 - 400 (480 - ) X 1076 = 292.23 KN -m

Check for strain € = 0.005
_a 13971
B, 085

c = 164.36 mm, p1 = 0.85

0003 < — c> 0003 (480 — 16436
& = c )7V 16436

Take ¢ = 0.9 for flexure as tension-controlled section.
M, = ¢M,, = 0.9-292.23 =263.01 KN-m

) = 0.00576 > 0.005 OK

4.11.6 Design of T-section.

The design of a T-section beam involves the choice of the cross section and the
reinforcement required. The flange thickness and width are usually established during the
design of the floor slab. The size of the beam stem is influenced by the same factores that
affect the size of a rectangular beam. In the case of a continuous T-beam, the concrete
compressive stresses are most critical in the negative-moment regions, where the
compression zone is in the beam stem (web).
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Design Procedure:

1. Check if the depth of the compression block within i:

the thickness of the flange. W /////

7

S fe—

i

Let a=hy, then compute I\7Inf— the total moment
capacity of the flange.

Vi ! hf
Case l:
a<hs or My =

Design as rectangular section.

Case ll:
_ M,
a> hf or M,y < ?,
Design as T-section. GO to step 2.
2. MTL - Mnf + an, AS = ASf + ASW'
Tr = Cf = Agsefy = 0.85f/(b — by)hs, fromwhere

_0.85£/(b - by)hy

sf 3 and

hy , hy
Mag = Asgfy (d =L ) = 085£/(b = bu)hy (d — 7

3. Design the web as rectangular section with b = b, , where

u

M, :Mn_Mnf :?_Mnf

Asw = pwbwd, pw=—|1-

Theindex XX; and XX, inthe previous notationrefersto f — flange,

Example:

w — web.

Compute the area of steel reinforcement for the interior beam shown below. The beam has

a clear span of 6 m (face to face).
Ultimate factored moment M,, = 720 KN -m
f¢ =20MPa, f, =400 MPa.
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o
o
— |
A A
, <
S 1
—
0
o
Ag Ag
Y <NO) ONO)
1000 | 300 | 1000 | 300 | 1000
Solution:

From the Geometry of T-section:
b, =300mm, d=510mm, t = hy =100 mm
b, is the smallest of:

L_6000
4 = 4 = mm,

(b) b, < b, +16h; = 300 + 16 - 100 = 1900 mm,

(a) b, <

(c) b, < Center to Center spacing between adjacent beams
b, = 1300 mm. —control

Take b = b, = 1300 mm.

h 100
M,s = 0.85f,bh; <d = 7’“) = 0.85- 20 - 1300 - 100 (510 x T) x 1076 = 1016.6 KN - m

_ M, 720
Mnf=1016.6KN-m>?=ﬁ=800KN-m = a<hf
The section will be designed as rectangular section with b = 1300 mm.

M, 720 £, 400

R, = = = 2.366 MPa, = = = 23.53
"= $bd2 _ 0.9-1300- 5102 4 M= 0.85f ~ 0.85-20
3, [ 2Ram\ 1 [ 2:2366°2353)

P=m 5, |~ 2353 400 IR

As = pbd = 0.0064 - 1300 - 510 = 4243.2 mm?

Check for Ag jmin
Vi 1.4
Asmin = 0.25 b,d = —b,d
y y
V20
Asmin = 0.25m300 - 510 = 428 mm?

1.4
Ag min = m300 510 = 534 mm? — control

Ag = 4243.2 mm? > Agpmin = 534 mm? — 0K
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Use 3 J 32 + 3 J 28 in two layers with

Ag = 24.127 + 18473 = 42.6 cm® > Ag,eq = 42.43 cm* — OK . 0.003 ]
Check for strain: ©
Asfy 4260 " 4‘00
= = =771
= 085/b 085-20- 1300 mm
. £, = 0.85
cC=—, = 0.
b1 1
c= W =90.71 mm
di=dto+ 2 o510422132 Z53g5
t — 2 2 - 2 2 = o mm
di—c 538.5 — 90.71
& = 0.003( ) =0.0 3( 5071 ) =0.0148 > 0.005 0K

Check for bar placement in one layer:

300—m40%x2—-—10%x2—-—3x32
b=
2

=52mm>d, =32mm, >25mm OK

Example:
Repeat the previous example using M;,, = 930 KN - m.

Solution:
_ M, 930
Mnf=1016.6KN'm<?=ﬁ=1033.3KN'T)’L = a>hf

The section will be designed as T-section section.

' 0.85f/(b — b,,)h
ASffy = 0.85f(b — bw)hf. from where Agp = c fy w f'
_0.85f/(b—b,)h; _ 0.85-20(1300 — 300) - 100

o f, 400

= 4250 mm?

2 2

My . _930
b " 709

hy 100 e
My = Agsfy | d — -2 ) = 4250 - 400 (510 ——) X 1076 = 782 KN - m

My = My — My = — 782 =251.3KN -m

Here the web will be designed as rectangular section with b = b, = 300 mm to
resist M,,,, = 251.3 KN -m

My, _ 251.3-10°

R.. = =
™ = p,dZ 3005102

= 3.22 MPaq,
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B L = 23.53
M= 0855’ 085-20

i, | _2Rwm)_ 1 ) 2-322:2353\ _
Pw = n 5, | 2353 400 R

Ay, = pybyd = 0.009 300 - 510 = 1377 mm?,
Ay = Agp + Ay, = 4250 + 1377 = 5627 mm?
Ag = 5627 mm? > A pin = 534 mm?* — 0K

Use 6 & 36 in two layers with A = 61.07 cm?® > Ao = 56.27 cm® - 0K

0.003

Asw provided = Asprovidea — Asf = 6107 — 4250 = 1857 mm? I I
Check for strain: °

Aswfy 1857 - 400
@ =085 f/b, _ 085-20-300  L4>65mm )
c= E' B = 0.85

145.65
c= 085 = 171.35mm ]
S d, 25 36

d, = d+§+7= 51O+7+7= 540.5 mm

d, —c 540.5 — 171.35
£ = 0.003( - ) = 0.003( T3E ) = 0.00646 > 0.005 0K

Check for bar placement in one layer:

300—40x2—-10%x2—-3x36
b:
2

=46mm >d, =36mm, >25mm OK
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CHAPTER 5 SHEAR IN BEAMS

1.1. INTRODUCTION

When a simple beam is loaded, bending moments and shear forces develop along the beam.
To carry the loads safely, the beam must be designed for both types of forces. Flexural
design is considered first to establish the dimensions of the beam section and the main
reinforcement needed, as explained in the previous chapters.

The beam is then designed for shear. If shear reinforcement is not provided, shear failure
may occur. Shear failure s
characterized by small deflections
and lack of ductility, giving little or
no warning before failure. On the
other hand, flexural failure is
characterized by a gradual increase
in deflection and cracking, thus
giving warning before total failure.
This is due to the ACI Code
limitation on flexural reinforcement.
The design for shear must ensure

that shear failure does not occur

Shear failure of reinforced concrete beam

before flexural failure.
By the traditional theory of homogeneous, elastic, uncracked beams, we can calculate shear
stresses, v, using equation

_ve
V=T

where V — total shear at the section considered,

Q — statical moment about the neutral axis of that portion of cross-section lying
between a line through the point in question parallel to the neutral axis and
nearest face, upper or lower, of the beam,

I — moment of inertia of cross-section about the neutral axis,

b — width of beam at the given point.

The tensile stresses are equivalent to the principal stresses. Such principal stresses are
traditionally called diagonal tension stresses. When the diagonal tension stresses reach the
tensile strength of concrete, a diagonal crack develops. This brief analysis explains the
concept of diagonal tension and diagonal cracking. The actual behavior is more complex, and
it is affected by other factors. For the combined action of shear and normal stresses at any
point in a beam, the maximum and minimum diagonal tension (principal stresses) fp are
given by the equation
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f — intensity of normal stress due to bending,
v — shear stress.

IR RN N NN R R RN R

v v 1]
-— f= —v - , 4
f f I iy
o 14
A N G , =
v _ v to 1
t=v
(b) (c) (d) (e)
C, a
e
T L Shear siress
< dx M, > M,
(@) Forces and stresses along the depth of the section,
Shear distribution
fi f
¥ D
S
’ 1
2
v—> { .
At section At section r f «—— Dlagontl
a—a b—b tension
(b) normal and shear stresses, (c) pure shear, (d) diagonal tension.
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Tension trajectories
——— Compression trajectories

Trajectories of principal stresses in a homogeneous isotropic beam.

1.2. CRITICAL SECTIONS FOR SHEAR DESIGN

Small v Large V

Large V Large V Large M Small M

La M Small M
, = —_— IR NN REERNNY
M- M
v
v
| |

Small v Large V Large V Large V
Large M Large M Small M Small M
p—— p—— —— p——

bt b4 b b d b bbbl b4yl

¢
| |
PN

v I\\\

Typical Locations of critical combinations of shears and moment

',
1

In a beam loaded on the top flange and supported on the bottom as shown in the figure
below, the closest inclined cracks that can occur adjacent to the supports will extend
outward from the supports at roughly 45°. Loads applied to the beam within a distance d
from the support in such a beam will be transmitted directly to the support by the
compression fan above the 45° cracks and will not affect the stresses in the stirrups crossing
the cracks shown. As a result, ACl Code Section 11.1.3.1 states:

For nonprestressed members, sections located less than a distance d from the face of the
support may be designed for the same shear, V,,, as that computed at a distance d.
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This is permitted only when
1. the support reaction, in the direction of the applied shear, introduces compression
into the end regions of a member,
2. theloads are applied at or near the top of the beam, and
3.  no concentrated load occurs within d from the face of the support.
Thus, for the beam shown below, the values of V,, used in design are shown shaded in the
shear force diagram.

tyvy IEEERRRR  RRR

~. .

% wl

|

This allowance must be applied carefully because it is not applicable in all cases. There are
shows five other typical cases that arise in design. If the beam was loaded on the lower
flange, as indicated in Fig. a, the critical section for design would be at the face of the
support, because loads applied within d of the support must be transferred across the
inclined crack before they reach the support.

Critical sections
|/Criticalsection \/\\—\J %s
im/HHJ./ Hﬁ 'ﬁH& Hi#I:_,._._.:'%&{JP
e, NIy

Fa

7 .
Beam \ Girder
Hanger
(a) Beam loaded on | reinforcement
tension flange. (b) Beam column joint, (c} Beam supported by shear.

ERRER’ ;’;2}?5;% l

| _—— Critical section

d

(dy Beam supported by tension force. {e) Beam with concentrated
load close to support.
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A typical beam-to-column joint is shown in Fig. b. Here the critical section for design is
d away from the section as shown.

If the beam is supported by a girder of essentially the same depth, as shown in Fig. c, the
compression fans that form in the supported beams will tend to push the bottom off the
supporting beam. The critical shear design sections in the supported beams normally are
taken at the face of the supporting beam. The critical section may be taken at d from the
end of the beam if hanger reinforcement is provided to support the reactions from the
compression fans.

Generally, if the beam is supported by a tensile force rather than a compressive force, the
critical section will be at the face of the support, and the joint must be carefully detailed,
because shear cracks will extend into the joint, as shown in Fig. d.

Occasionally, a significant part of the shear at the end of the beam will be caused by a
concentrated load acting less than d from the face of the column, as shown in Fig. e. In such
a case, the critical section must be taken at the support face.

1.3. TYPES OF WEB REINFORCEMENT

Vertical stirrups

T

=5
=

11 (I i
N I I
bl i o L L LELLI L

-~

(a)
Stirrup support bars
O . ® Q
Main reinforcing bars 0
(b) (c)
——= =
/7
s _k_=== 'l_-===_____
7707 r AAN\Y
Bent-up E
longitudinal bars
(d)
a) Vertical Stirrups, b) U-shaped bars single stirrups.
C) Multiple-leg stirrups d) Bent-up longitudinal (inclined) bars
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®

® e

The ACI Code defines the types of shear reinforcement as:

11.4.1.1 — Shear reinforcement consisting of the following shall be permitted:
(a) Stirrups perpendicular to axis of member;
(b) Welded wire reinforcement with wires located perpendicular to axis of

member;
(c) Spirals, circular ties, or hoops.
11.4.1.2 — For nonprestressed members, shear reinforcement shall be permitted to also

consist of:
(a) Stirrups making an angle of 45 degrees or more with longitudinal tension

reinforcement;

(b) Longitudinal reinforcement with bent portion making an angle of 30 degrees
or more with the longitudinal tension reinforcement;

(c) Combinations of stirrups and bent longitudinal reinforcement.

1.4. DESIGN PROCEDURE FOR SHEAR

Design of cross section subjected to shear shall be based on:
¢V 2V,
where 1}, — the factored shear force at the section,
,, — the nominal shear strenght,
Vo =V + V5,
V. — the nominal shear strenght provided by concrete,

Vs — the nominal shear strenght provided by shear reinforcement (stirrups),

The figure shows a free body between the end of a beam and an inclined crack. The
horizontal projection of the crack is taken as d, suggesting that the crack is slightly flatter
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than 45°. If s is the stirrup spacing, the number of A B
stirrups cut by the crack is d/s. Assuming that all l
the stirrups yield at failure, the shear resisted by i'i ﬁ l“l in| |'i |"| Fc_c
the stirrups is
y, = Al
s

ACI Code 11.2.1 states, for members subject to

shear and flexure only

1
V. = gl fdby,d = 0.174\/f/b,,d, A =1.0 for Normal — weight concrete
V. shall be permitted to be computed by the more detailed calculation
V,d V,d
v, = (0.161,/]? +17p, A‘/}—) b,d < 0.297/b,,d, where 2L <1q
u u

To simplify the calculations the formula V., = 0.171,/f/b,,d will be used.

Shear conditions and cases (Items):

<¢— Face of Support

QLD-

\ Shedr carfiad

'\\ :
& T \\ by stirrups ¢Vg

by concrete ¢V

Vu i Shear carried

Ve
I OVe/2
Min. shear ~ Shear ~ -
Shear reinforcement required reinforcement reinforcemment ~
] R ~
not req'd

Check for dimensions:

The ACI Code, 11.4.7.9, states that I shall not be taken greater than 0.66,/ f/b,, d.
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So, if Vs> Vimax — The section must be enlarged (Dimenstions are not enough)
|4
where Vs‘an_Vc:;?_Vc» Vsmax = 3 \/f_cb d
Case I:
1 . . ,
V, < =3 ¢V, — No shear reinforcement is required
Case ll:

Ed)VC < V, < ¢V, -Minimum shear reinforcement is required (Av,min) except:

e footings and solid slabs,

e Hollow-core units with total untopped depth not greater than 315 mm and hollow-
core units where V,, is not greater than 0.5¢V,,,;

e Concrete joist construction;

e Beams with h not greater than 250 mm;

e Beam integral with slabs with h not greater than 600 mm and not greater than the
larger of 2.5 times thickness of flange, and 0.5 times width of web;

e Beams constructed of steel fiber-reinforced, normalweight concrete with f; not
exceeding 40 MPa, h not greater than 600 mm, and V,, not greater than 0.17,/f/b,,d.

For these cases no shear reinforcement is required unless V,, > ¢V..

Minimum shear reinforcement, A, in

A, = S g oea plyS 5 1DwS g ggbws
vmin C fyt Cc fyt - 3 fyt . fyt )
Ay min 1b,, 1 by,
or inthe form ( - ) > fd—,
S 3 fyt \/_nyt
d
Here Smax < 5 or Smax < 600 mm

where s — step of stirrups (spacing between stirrups),
fyt — yield stress of stirrups

Case lll:
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then, Vsnmin is the maximum of

1 1
Vs min = 1_6 fébwd and Vsmin = §bwd
Minimum shear reinforcement is provided (Av,ml-n) with
d
Smax < 5 or Smax < 600 mm

Case IV:

SV + Vomin) < Vi < ¢(V. + V') — stirrups are required

, , .
where  Vomin < Vs < V5, =t Ve==Ve V' =3 \fibwd
A, Vs
and — =
S fytd
d

here Smax < > or Smax < 600 mm
Case V:

W+ V) < Vi < ¢(Ve + Vimax) — Stirrups are required

! Vu ! 1 /
where V! <V; < Vymax, Vo=th—Ve=3 -V, VW =3Vibuwd,

2 A Vs
Ve max = =~/ f/ bwd and — =
smax 3 \/_C w S fytd
d

here Smax < 7 or Smax < 300 mm
Example:

The Figure shows the elevation and cross section of a simply supported T-beam. This beam
supports a uniformly distributed service (unfactored) dead load of 20 KN /m, including its
own weight, and a uniformly distributed service live load of 24 KN/m. Design vertical
stirrups for this beam. The concrete strength is 25 MPa, the yield strength of the flexural
reinforcement is 420 MPa, and the yield strength of the stirrups is 300 MPa.

The support reactions act usually at the center of supports with full span center to center
of supports, in this example, we have no information about the support width, so we
assumed that the shear calculations will be done for the given clear span with end
reactions at the face of supports for the following all examples.
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Important Note:

In a normal building, the dead and live loads are assumed to be uniform loads. Although the
dead load is always present over the full span, the live load may act over the full span, or

over part of the span. Full uniform load over the full span gives the maximum shear at the

ends of the beam. Full uniform load over half the span plus dead load on the remaining half

gives the maximum shear at midspan. The maximum shear forces at other points in the span

are closely approximated by a linear shear-force envelope resulting from these cases.

20 kKN/m
24 kN/m

IHH:HHJH]

T £=10m I
I‘f |

arl

D
L

{a) Elevation.

w, = 62.4 kN/m

EEXEREEEEEEE N
l _|

T 312 kN T

Vi

312 kN
(c) Load case 1.

wyl
¥ = 312kN
Widl _ 48 kN

8

(e) Shear force envelope.
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b = 900 mm \

B |
£ “\ ﬂ yd |
E /
o h; = 150 mm
{n]
i
o

X we

b, = 300
(b) Section.
= B2. m
w, =62.4 kN/ wpy = 24 KN/M

ERERN ==
T il

264 kN
Vu%\
*%km _168 kN

(d) Load case 2.

(fy V, /¢ diagram.
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Solution: 416 KN
Critical section at d = 610 mm from the \n
face of support.
M gt g
V,atd =610mm. | . T 64 KN
416 — 64 y 309 KN
= _ y =
5 5—0.61 d = 610/mm

v - >
Vn=£—y+64=309+64=373KN . 5m R

1 1
V=—A fd by d—glv +300-610-1073 = 152.5 KN.

Check for section dimensions:

V, =V, — V. =373 —152.5 = 220.5 KN.
Vimax = = Jﬁb d= ﬁ-300-610-10-3=6101<1v

V. =2205KN < Vs,max = 610 KN - the section is large enough.
OR

Vamax = Ve + Vsmax = 2 \/Eb d+3 \/Eb d= (6 3)\/Eb d= \/Ebwd=5Vc

Vimax = 5+ 152.5 = 762.5 KN

|4
é‘ =373 KN < Vymax = 762.5KN  — the section is large enough
Find the maximum stirrups spacing:
) .1 d
if Ve <V = 5\/Ebwd then Smax < > or Smax < 600 mm
1 [ 1 -3
= 5\/Ebwd = §\/25 +300-610-1073 = 305 KN
V, = 220.5 KN <V, =305 KN then
Smax < 600 mm, Smax < >= 5 < 305 mm — control

V,=373KN >V.=1525KN  or
V, = ¢V, = 0.75-373 = 279.75 KN > ¢V, = 0.75- 152.5 = 114.375 KN

Try minimum shear reinforcement:

Ay min = \/f—c f but not less than
yt
1b,,s
Ay min = §fl — control (— fd=— —)
yt

Use stirrups U-shape (double-leg stirrups) @ 10 with A, = 2-78.5 = 157.1 mm?
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34,f,c 3-157.1-300
b, 300
Apfyed  157.1-300 - 610

s 305 '

S

Vs(2® 10) =

Vs = 2205 KN > Vp0110) = 94.26 KN, find "s" - Case IV

Alternative step is to calculate Vg i,

1 1
Vs min = E\/ﬁbwd = E\/ﬁ- 3006101073 = 57.2 KN

1

1
Vsmin = §bwd =-300-610-10"3=61KN  — control

3

d)(Vc + Vs,min) < V;z < ¢(Vc +

0.75(152.5+ 61) = 160.13 KN < V,, = 279.75 KN < 0.75(152.5 4+ 305) = 343.13 KN

Or V; = 220.5 KN >V nin = 61 KN — Case IV

Compute the stirrups spacing required to resist the shear forces.

4, _ Afyed  157.1-300- 610

= - S
s fyd v, 220.5-103

=471.3mm > S;yq, = 305 mm,

1073 = 94.26 KN

= 130.4 mm.

Take U-shape (double-leg stirrups) & 10@125 mm < S0, = 305 mm.

Changing "s" to s, = 2s; = 2 - 125 = 250 mm for another region.

(ﬁ_ V) 416 KN
a_v _o7%) _ h_afd
S fytd fytd ¢ S ¢
Vy _157.1-300-610 o Vu
& 250103 2T e ¢
416 — 64  267.5 — 64
= —x=21m

5 5—x

Example:

267.5 KN

take s = sy = 305 mm

64 KN

Y

The simply supported beam shown below is loaded by a service dead load of 40 KN /m, and

a uniformly distributed service live load of 25 KN /m. Design vertical stirrups for this beam.

The concrete strength is 25 MPa, and the yield strength of the stirrups is 412 MPa.

y 55m =4

68
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Solution:

wyp = 1.2-40 = 48 KN/m, wy, = 1.6+25 =40 KN/m

wl (48 +40) -5.5

V,, at face of support = - = > = 242 KN,
) wyl  40-5.5
V, at midspan = s - g = 27.5KN,

Wy, =40 KN/m

EEEEEEEEEEE
wyp =48 KN/m
LY ¢ ¥ vV oYY Y oYYV VY b oYYV YY Yy

A .

55m

242 KN Critical section at d from the face of
support

27.5KN

275 m

242 KN

Critical section at d = 260 mm from the face of
support.
V,atd = 260 mm.

242 -275 y
275  2.75—10.26
V, =y +275=194.22 +27.5 = 221.72 KN

— y =194.22 KN d|= 260 mm

2.75m

A

1 1
v, = gaﬁbwd =1 V251000 - 2601073 = 216.67 KN.

Check for section dimensions:

V, 22172

V v, —216.67 = 79KN.
ST® ¢ 075

2
b, d = §V25 1000 - 260 - 1073 = 866.67 KN

_(,SI
3
Q
=
|
w |
=
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Ve =79 KN < Vgmax = 866.67 KN — the section is large enough.

Check for VS min-
Ay min = fc but not less than
fyt
1b,s
Apmin = =—2, — control — =<z

1 1
Vs min = E\/f_c’bwd = E\/ﬁ- 1000 - 260 - 1073 = 81.25 KN

1
Vs,min= b d=—= 1000 260-1073 = 86.67 KN — control

¢Vc < Vu < ¢(Vc + Vs,min)
0.75(216.67) = 162.5 KN < V, = 221.72 KN < 0.75(216.67 + 86.67) = 227.51 KN

or V,=79KN < Vs,mm = 86.67 KN — Case Il

Ay mi Ay mi 1b
LU C but not less than VIR — ——W,
S fyt S 3fyt
Ay min 1000
P —\/ m 0.7585
Ay min 1 1000
4 = — X — = 0. —
S 3% 112 0.80906 — control
Use stirrups 2U-shape (4-leg stirrups) @ 8 mm with 4, = 4-50.27 = 201.1 mm?
201.1
— = = 0.80906 = s=248.6mm
d 260
Smax < 600 mm, Smax < 7= 5 = 130 mm — control

Take 2U-shape (4-leg stirrups) & 8@125 mm < Sy = 130 mm

/ 8@125 mm
A
J8@125 mm §
O
(V]
® ® O ([ ) v
J8@125 mm
100 cm .
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CHAPTER 6 COLUMNS: COMBINED AXIAL LOAD AND BENDING

6.1 TYPES OF COLUMNS.

Columns are vertical compression members of a structural frame intended to support the
load-carrying beams. They transmit loads from the upper floors to the lower levels and, then
to the soil through the foundations. Since columns are compression elements, failure of one
column in a critical location can cause the progressive collapse of the adjoining floors and
the ultimate total collapse of the entire structure.
Structural column failure is of major significance in terms of economic as well as human loss.
Thus extreme care needs to be taken in column design, with a higher reserve strength than
in the case of beams and other horizontal structural elements, particularly since
compression failure provides little visual warning.
In reinforced concrete buildings, concrete beams, floors, and columns are cast
monolithically, causing some moments in the columns due to end restraint. Moreover,
perfect vertical alignment of columns in a multistory building is not possible, causing loads to
be eccentric relative to the center of columns. The eccentric loads will cause moments in
columns. Therefore, a column subjected to pure axial loads does not exist in concrete
buildings. However, it can be assumed that axially loaded columns are those with relatively
small eccentricity, e, of about 0.1k or less, where h is the total depth of the column and e is
the eccentric distance from the center of the column. Because concrete has a high
compressive strength and is an inexpensive material, it can be used in the design of
compression members economically.
Columns may be classified based on the following different categories:
1. Based on loading, columns may be classified as follows:
a. Axially loaded columns, where loads are assumed acting at the center of the
column section.

P P P P
, M, e, ", M, ‘-'y—-jl -
sy Ay i 7 (> y
. » e /;x
X// X// )(/K X//
or or
y Y 4 /
(a) concentrically (b) axial load plus | (c) axial load plus
loaded column; uniaxial moment; biaxial moment.

Types of columns based on the position of the load on the cross section.
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b. Eccentrically loaded columns, where loads are acting at a distance e from the

center of the column section. The distance e could be along the x — or

Yy — axis, causing moments either about the x — or y —axis.

c. Biaxially loaded columns, where the load is applied at any point on the

column section, causing moments about both the x — and y — axes

simultaneously.

2. Based on length, columns may be classified as follows:

a. Short columns, where the column's failure is due to the crushing of concrete

or the yielding of the steel bars under the full load capacity of the column.

b. Long columns, where buckling effect and slenderness ratio must be taken into

consideration in the design, thus reducing the load capacity of the column

relative to that of a short column.

A column that has large secondary moments is said to be a slender Pl

column, and it is necessary to size its cross section for the sum of both
the primary and secondary moments. The ACl's intent is to permit
columns to be designed as short columns if the secondary or PA effect
does not reduce their strength by more than 5%.

Therefore, the transition from the short column (material failure) to
the long column (failure due to buckling) is defined by using the ratio
of the effective length kl,, to the radius of gyration r. The height, [,,, is
the unsupported length of the column, and k is a factor that depends
on end conditions of the column and whether it is braced or unbraced.

. o kly .
For example, in the case of unbraced columns, if Tu is less than or

equal to 22, such a column is classified as a short column, in

accordance with the ACl load criteria. Otherwise, it is defined as a long P'

- kly . .
or a slender column. The ratio 7“ is called the slenderness ratio.

>M

Secondary _
moment ~

"y

PA

3. Based on the shape of the cross-section, column sections may be square, rectangular,

round, L-shaped, octagonal, or any desired shape with an adequate side width or

dimensions.

4. Based on column ties, columns may be classified as follows:

a. Tied columns containing steel ties to confine the main longitudinal bars in the

columns. Ties are normally spaced uniformly along the height of the column.

b. Spiral columns containing spirals (spring-type reinforcement) to hold the main

longitudinal reinforcement and to help increase the column ductility before

failure. In general, ties and spirals prevent the slender, highly stressed

longitudinal bars from buckling and bursting the concrete cover.
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=
H

(a) Rectangular tied Column (b) Round spiral Column

1t
[
10
Bl
il
1
i
i

5. Based on frame bracing, columns may be part of a frame that is braced against
sidesway or unbraced against sidesway. Bracing may be achieved by using shear walls
or bracings in the building frame. In braced frames, columns resist mainly gravity
loads, and shear walls resist lateral loads and wind loads. In unbraced frames,
columns resist both gravity and lateral loads, which reduce the load capacity of the

columns.
A Vertical L Vertical L
A Load a Load a
0T 2 Wiy 2
- y e e
X il r i r
Pl A lgq—— QA | —— a
"(n':‘ = VE;ticaI | VErtaicaI |
LT W
o - L - L
}_‘? A0 o o
S (AR Y a i a
ﬁ - d -— d
v;‘;""_,
/1777777777777 7 [7777777777777777777
Braced (Nonsway) Frame Unbraced (sway) Frame
P

T

Laterally braced frame Laterally unbraced frame
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6. Based on materials, columns may be reinforced, prestressed, composite (containing
rolled steel sections such as I-sections), or a combination of rolled steel sections and
reinforcing bars. Concrete columns reinforced with longitudinal reinforcing bars are
the most common type used in concrete buildings.

Ties Spiral
\ Steel tubing

£
| £
uy
L) ;
o
u
Typically 30- 60 cm ::
/'/ A, e = Spiral Concrete filled
>
)
=)
' S
b o
¥
[
A Por |
(a) Tied column (b) Spirally reinforced column (c) Composite column {d) Composite column

(spiral bound encasement (steel encased concrete core)
around structural steel core)

6.2 BEHAVIOR OF AXIALLY LOADED COLUMNS.

When an axial load is applied to a reinforced concrete short column, the concrete can be
. . 1
considered to behave elastically up to a low stress of about 3 (f2). If the load on the column

is increased to reach its ultimate strength, the concrete will reach the maximum strength
and the steel will reach its yield strength, f,,. The nominal load capacity of the column can be
written as follows:

P, = 0.85f/A, + Agyf,
where 4,, and Ag; — the net concrete and total steel compressive areas, respectively.

Ap=Ag — Ay

Ay — gross concrete area.
Two different types of failure occur in columns, depending on whether ties or spirals are
used. For a tied column, the concrete fails by crushing and shearing outward, the
longitudinal steel bars fail by buckling outward between ties, and the column failure occurs
suddenly, much like the failure of a concrete cylinder.
A spiral column undergoes a marked yielding, followed by considerable deformation before
complete failure. The concrete in the outer shell fails and spalls off. The concrete inside the
spiral is confined and provides little strength before the initiation of column failure. A hoop
tension develops in the spiral, and for a closely spaced spiral, the steel may yield. A sudden
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failure is not expected. The Figure shows
typical load deformation curves for tied and A
spiral columns. Up to point a, both columns
behave similarly. At point a, the longitudinal
steel bars of the column yield, and the spiral
column shell spalls off. After the factored
load is reached, a tied column fails suddenly

(@ (©)

(curve b), whereas a spiral column deforms

appreciably before failure (curve c). T— ot
|

Behavior of tied and spiral columns.

. S Heavy spiral

p Initial failure )

u [T T e <"AC]| spiral

Light

}'é Tied column spiral
T
Z

0

Axial deformation A

Column Failure by Axial Load

Insufficient ties

6.3 ACI CODE LIMITATIONS

The ACI Code presents the following limitations for the design of compression members:

1. For axially as well as eccentrically loaded columns, the ACI Code sets the strength-
reduction factors at ¢ = 0.65 for tied columns and ¢ = 0.75 for spirally reinforced columns.
The difference of 0.1 between the two values shows the additional ductility of spirally
reinforced columns. The strength-reduction factor for columns is much lower than those for

75



Reinforced Concrete | Dr. Nasr Abboushi

flexure (¢ = 0.9) and shear (¢ = 0.75). This is because in axially loaded columns, the
strength depends mainly on the concrete compression strength, whereas the strength of
members in bending is less affected by the variation of concrete strength, especially in the
case of an under-reinforced section. Furthermore, the concrete in columns is subjected to
more segregation than in the case of beams. Columns are cast vertically in long, narrow
forms, but the concrete in beams is cast in shallow, horizontal forms. Also, the failure of a
column in a structure is more critical than that of a floor beam.

2. The minimum longitudinal steel percentage is 1%, and the maximum percentage is
8% of the gross area of the section (ACI Code, Section 10.9.1). Minimum reinforcement is
necessary to provide resistance to bending, which may exist, and to reduce the effects of
creep and shrinkage of the concrete under sustained compressive stresses. Practically, it is
very difficult to fit more than 8% of steel reinforcement into a column and maintain
sufficient space for concrete to flow between bars.

001 <p,y = ﬁ < 0.08
A

g
3. At least four bars are required for tied circular and rectangular members and six

bars are needed for circular members enclosed by spirals (ACI Code, Section 10.9.2). For
other shapes, one bar should be provided at each corner, and proper lateral reinforcement
must be provided. For tied triangular columns, at least three bars are required.

4. The ties shall be arranged that every corner and alternate longitudinal bar shall
have lateral support provided by the corner of s tie having an included angle of not more
than 135° and no bar shall be farther 150 mm clear on either side from such a laterally
supported bar. The Figures below show the arrangement of longitudinal bars in tied columns
and the distribution of ties. The minimum concrete cover in columns is 40 mm.

5. The minimum of volumetric spiral reinforcement ratio which defined as the ratio of
the volume of spiral steel to the volume of core concrete, p,, according to the ACI Code,
Eqg. 10.5, and as explained in Section 10.9.3, is limited to

ps = 0.45 (A—g - )f—cl
* Ach fyt
where A, — gross area of section.

A — area of core of spirally reinforced column measured to the outside diameter of
spiral.

fyt — yield strength of spiral reinforcement.

6. The minimum diameter of spirals is 10 mm, and their clear spacing should not be
more than 75 mm nor less than 25 mm, according to the ACI Code, Section 7.10.4.

. . . 1 . .
Anchorage of spiral reinforcement shall be provided by 1 3 extra turns of spiral bar or wire at

each end of a spiral unit.
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7. Ties for columns must have a minimum diameter of & 10mm to enclose
longitudinal bars of & 32 mm or smaller and a minimum diameter of & 13 mm for larger
bar diameters (ACI Code, Section 7.10.5).

8. Spacing of ties shall not exceed the smallest of:
e 48 times the tie diameter,
e 16 times the longitudinal bar diameter, or
e the least dimension of the column.
The Code does not give restrictions on the size of columns to allow wider utilization of
reinforced concrete columns in smaller sizes.

Lg%lnax-——Tq—hTTq—bi gﬁgrnax—-—Ti—iTii—aT
150 max
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Z8) Ze | — |

4 7 X
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1
;
1
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B I | Do
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DETAILS AND DETAILING OF CONCRETE REINFORCEMENT

315-35

WHEN LESS THAN 6% (150mm]
WHEN GREATER THAN &° [150mm]
4 BAR —=—NOTE 1 (TYPICAL) | !""4| !"S"!
6 BAR
{hote 1 (TvPICAL)
SPACING <6"[150mm] PACING »6"[150mm]
) E C 1 NOTE 3 —f
6 BAR ] <6"[150mm] 56 (TYPICAL?
y [150mm]
SPACING <6"[150mm] SPACING >6”[150mm]
17
10 BAR
12 BAR
16 BAR SIMILAR (WITH 2-BAR BUNDLES EA CORNER) 15.EAR 5 IMILAR
20 BAR SIMILAR (WITH 3-BAR BUNDLES EA CORNER ) (4-8AR BUNDLES £4 CORNER)
24 BAR SIMILAR (WITH 4-BAR BUNDLES EA CORNER)
JHE——6“MAX [ 150mm]
Fr=
1’ :ENDTE'Z
14 BAR L {TYPICAL)
L!'TT‘_
18 BAR SIMILAR (W[TH Z-BAR BUNDLES EA CORNER) 18 BAR SIMILAR
22 BAR SIMILAR (WITH 3-BAR BUNDLES EA CDRNER) {4-8AR BUNDLES EA CORNER)
26 BAR SIMILAR (WITH 4-BAR BUNDLES EA CORNER)
6 “MAX [ 150mm]
. J7?-&3"1\.:.1\3( [150mm]
14 BAR =
20 BAR SIMILAR (WITH 2-BAR BUNDLES EA CORNER? 20 BAR SIMILAR
24 BAR SIMILAR (WITH 3-BAR BUNDLES EA CORNER) (4-BAR BUNDLES EA CORNER)
28 BAR SIMILAR (WITH 4-BAR BUNDLES EA CORNER)
A different pattern of ties may be substituted
provided that details of the requirements are
- SPLICE BAR shown on the contract drawings. Single-leg tie
{ [F REQUIRED) arrangements instead of the one piece diamond
tie shown are an acceptable alternate.
TIED COLUMNS WITH 2-BAR BUNDLES

Notes:

1. Alternate position of hooks in placing successive sets of ties.

2. Minimum lap shall be 12 in. (300 mm)|.

3. B indicates bundled bars. Bundles shall not exceed four bars.

4. Elimination of tie for center bar in groups of three limits clear spacing to be
6 in. (150 mm) maximum. Unless otherwise specified, bars should be so

rouped.
g 5, mte to Architect/Engineer: Accepted practice requires that design draw-
ings show all requirements for splicing column verticals, that is, type of splice,
lap length if lapped, location in elevation, and layout in cross section.

6. Note to Detailer: Dowel erection details are required for any design

emptoyinﬁ special large vertical bars, bundled vertical bars, staggered splices,
or specially grouped vertical bars as shown.

7. Bars must be securely supported to prevent displacement during concreting.

8. Tie patterns shown may accommodate additional single bars between tied
groups provided clear spaces between bars do not exceed 6 in. (150 mm).

9. Minimum cover to ties, 11/2 in. (40 mm) for nonprestressed cast-in-place
concrete,

10. Spaces between corner bars and interior groups of three and between
interior groups may vary to accommodate average spacing > 6 in. (150 mm).

11. Fer average spacing < 6 in. (150 mm), one untied bar may be located
between each tied group of three and between a tied group and a corner bar.

Fig. 13—Standard column ties applicable for either preassembled cages or field erection.
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315-36 ACI STANDARD
COLUMNS WITH VERTICAL BARS IN TWO FACES ONLY
|—|—a~|150m]mx.ﬂvp. }-NOTE 3
VARLABLE
/—SEE NOTE 1 m_r_]
1
——SEE NOTE 2 |
' Lo
8 OR 12 BARS 10 OR 14 BARS 12 BARS
(NOTE 7) (NOTE 7) SPACING >6"[150mm]
[ | sjﬂﬂ'rﬁ?
i
L R, == ;L a Jat)
14 _0OR 18 BARS 16 OR 20 3ARS 18 OR 22 BARS
(NOTE T7) (NOTE T) (NOTE T7)
P (i Tﬁ—r’r‘\——-(m\’-.ﬁ I - 1}7'“1_!'“,.
1
7 i 1
“Lh-.-JJ—gL-_JJ— asdhs) nJ J_Ln.u ‘J_kuj )X

24 BARS

SPECIAL - SHAPED COLUMNS

2 PCS

SPECIAL CORNER COLUMN

Notes:

1. Alternate position of hooks in placing successive sets of ties.

2. Minimum lap shall be 12 in. (300 mm).

3. Elimination of tie for center bar in groups of three limits clear spacing to be
6 in. (150 mm) maximum. Unless otherwise specified, bars should be so
grouped.
4. Note to Architect/Engineer: Accepted practice requires that design draw-
ings show all requirements for splicing column verticals, that is, type of splice,
lap length if lapped, location in elevation, and layout in cross section.

5. Note to Detailer: Dowel erection details are required for any design
employing special large vertical bars, bundled vertical bars, staggered splices,
or specially grouped vertical bars as shown.

6. Bars must be securely sul:rported to prevent displacement during concreting.

7. Bars shown as open circles may be accommodated provided clear spaces
between bars do not exceed 6 in. (150 mm).

8. Tie patterns shown may accommeodate additional single bars between tied
groubls provided clear spaces between bars do not exceed 6 in. (150 mm).

9. Minimum cover to ties, 1 1/2 in. (40 mm) for nonprestressed cast-in-place
concrete,

10. Spaces between corner bars and interior groups of three and between
interior groups may vary to accommodate average spacing > 6 in. (150 mm).

11. For average spacing < € in. (150 mm), one untied bar may be located
between each tied group of three and between a tied group and a corner bar.

Fig. 14—Standard column ties applicable for either preassembled cages or field erection, special-shaped columns, and

columns with bars in two faces only.
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6.4 DESIGN OF TIED AND SPIRAL SHORT CONCENTRICALLY LOADED COLUMNS.

It is highly improbable to attain zero eccentricity in actual structures. Eccentricities could
easily develop because of factors such as slight inaccuracies in the layout of columns and
unsymmetric loading due to the difference in thickness of the slabs in adjacent spans or
imperfections in the alignment. For many years the Code specified that such columns had to
be designed for certain minimum moments even though no calculated moments were
present. This was accomplished by requiring designers to assume certain minimum
eccentricities, e, for their column loads. These minimum values were 25 mm, or 0.05h,
whichever was larger, for spiral columns and 25 mm, or 0.10h for tied columns. (The term h
represents the outside diameter of round columns or the total depth of square or
rectangular columns.) A moment equal to the axial load times the minimum eccentricity was
used for design M,, = P, - e.

To reduce the calculations necessary for analysis and design for minimum eccentricity, the
ACI Code specifics a reduction of 20% in the axial load for tied columns and a 15% reduction
for spiral columns. Using these factors, the maximum nominal axial load capacity or columns
cannot be taken greater than:

Pymax = 0.8 [0.85]‘6’(Ag — Ast) + Astfy] — for tied reinforced columns, and

Py max = 0.85 [0.85fc’(Ag — Ast) + Astfy] — for spirally reinforced columns.

Spiral Reinforcement. Spiral reinforcement in compression members prevents a sudden
crushing of concrete and buckling of longitudinal steel bars. It has the advantage of
producing a tough column that undergoes gradual and ductile failure. The minimum spiral
ratio required by the ACI Code is meant to provide an additional compressive capacity to
compensate for the spalling of the column shell.
Volumetric spiral reinforcement ratio, pg, shall be not less than the value given by:
'
ps = 0.45 (A—g — 1>f—c
Ach fyt

where A, — gross area of section.

&

A.p — area of core of spirally reinforced column measured

to the outside diameter of spiral. m

fyt — yield strength of spiral reinforcement.

Ay =wD* /4
Once the required percentage of spiral steel is determined, the Aghﬂ.oc?h/‘g
spiral may be selected with the expression to follow, in which p; is fe——D——»
written in terms of the volume of the steel in one loop: /L" ]
volume of spiral in one loop Vspirai ' o
Ps = volume of concrete core for a pitch"s"  Vipre /:h _f_
¢ S
_ Vspiral _ asﬂ(Dch - ds) _ 4as(Dch - ds) [~ —— |
Ps = V. - DZ - DZ “"'|
core TWeh) SUch (
: =
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In this expression, D is the diameter of the core
out to out of the spiral, ag is the cross-sectional area
of the spiral bar, and d; is the diameter of the spiral
bar. Here reference is made to next Figure. The
designer can assume a diameter for the spiral bar

and solve for the pitch required. If the results do not

seem reasonable, he or she can try another diame-
ter. The pitch used must be within the limitations
listed before (ACI requirements).

Example:
Design an axially loaded short square tied column for B, = 2600 KN.
Given: f{ = 28 MPa, f,, = 350 MPa.

Solution:

‘jl_;t < 0.08, p; = 0.02 = Ase = pgAy = 0.024,

* Assume 0.01 < p, =

e Selecting column dimensions:

®Pumax = B, = ¢ 0.8[0.85f/(A; — As) + Asefy], & = 0.65 — for tied column
2600 x 10° = 0.65 - 0.8[0.85 - 28(4, — 0.024,) + 0.024, - 350]

4 - 2600 x 103
9 15.768

Ay = a:? = a= /Ag =164885.9 = 406 mm.

= 164885.9 mm?

Try a = 400 mm, Ay = a® = 400 = 160000 mm?.
e Selecting longitudinal bars:

2600 x 103 = 0.65 - 0.8[0.85 - 28(160000 — Ag,) + Ag; - 350]

_ [PO00X10° 4e08000| L = 3654.2 mm?
St~ 170.65-0.8 3262 oo remm

Use 6 & 28 with Ay, = 36.945 cm? > Agpreq = 36.542 cm?.
Ay 36945

Pa =4, ~ 160000

= 0.023

e Design of Ties:
Use ties @ 10 with spacing of ties shall not exceed the smallest of:
1. 48 times the tie diameter, 48d; = 48 - 10 = 480 mm,
2. 16 times the longitudinal bar diameter, 16d;, = 16 - 28 = 448 mm,

3. the least dimension of the column = 400 mm. — control
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Use ties & 10 @ 400 mm.
e Check for code requirements:
1. Clear spacing between longitudinal bars:
400—-40-2—-10-2-28-3

Clear space = > = 108 mm > 40 mm, and

> 1.5d, = 1.5 - 28 = 42 mm — OK.

2. Gross reinforcement ratio:

0.01 < p,; =0.023 < 0.08 — 0K
3. Number of bars: 6 > 4 — for square section - 0K
4. Minimum tie diameter: & 10 for & 28 bars - 0K
5. Spacing of ties: s = 400 mm — 0K
6. Arrangement of ties: 108 < 150 mm. -0K
328

A
ot
' 10 @ 400 mm

400 mm
N

400 mm

A
\ 4

328

Example:
Design an axially loaded short round spiral column to support an axial dead load

DL = 800 KN and an axial live load LL = 1610 KN.
Given: f = 30 MPa, f,, = 400 MPa, and f,; = 400 MPa.

Assume p, = 0.02

Solution:

e P, =12DL+16LL=12-800+1.6-1610 = 3536 KN
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o Ay =0.024,
e Selecting column dimensions:

OPrmax =P, = ¢ 0.85[0.85]‘6’(Ag — Ast) + Astfy], ¢ = 0.75 — for spiral column

3536 x 10 = 0.75 - 0.85[0.85 - 30(4, — 0.024,) + 0.024, - 400]

5546666.7 5
g = 33 = 168081 mm
nD? 4Ag 4-168081
Ag = — = D= = = 462.6 mm.
4 Y4 YI4
nD? 1 - 4502
Try D = 450 mm, Ag = 2 = 2 = 159043.13 mm?

e Selecting longitudinal bars:

3536 x 10% = 0.75 - 0.85[0.85 - 30(159043.13 — A,,) + Ag, - 400]

a4, = [P236X10°  ecs00s| L — 3081.5 mm?
st =170.75- 0.85 °l3745 = 2 T

Use 11 & 22 with Ay = 41.815 cm? > Agppeq = 39.815 cm?.

_Ax_ 41815
Po =4, 15904313
e Design of spiral reinforcement:
Use spiral @ 10 witha, = 78.54 mm?:
D.p, =D — 2cover = 450 — 2-40 = 370 mm,
a, =0 0 004313 mm?
9= =T = 13 mm?,
D% m-370? "
Ao = T - 1 - 107521 mm?,
= 0.45 (Ag 1) JE _ o4 (159043'13 ) 39 _ 01617
Ps =5 a8 T TTo7521 200
4a,(D., — d 4-78.54(370 — 10
pg = 5( it ) _ ( _ ) _ 001617 = s=51.09mm
sD&, s-370

Take s = 50 mm
e Check for code requirements:
1. Clear spacing between longitudinal bars:
diameter of the centroidal circle of bars =450 —40-2—10-2 — 22 = 328 mm
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71.68 mm

328 mm

&
<

450 mm

A
Y

m-328—11-22
Clear space = 11 = 71.68 mm > 40 mm, and

>1.5d, =15-22 =33 mm - OK.
2. Gross reinforcement ratio:
0.01 < p,; =0.0263 < 0.08 - 0K
3. Number of bars: 11 > 6 — for circular members enclosed by spirals — 0K
4. Minimum spiral diameter: & 10 — OK
5. Clear spacing for one loop:  clear spacing = s —dg =50 — 10 = 40 mm

25mm <40 mm < 75mm — 0K

& 10 @ pitch s=50 mm

450 mm
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6.5 ECCENTRICALLY LOADED COLUMNS: AXIAL LOAD AND BENDING.

Members that are axially, i.e., concentrically, compressed occur rarely, if ever, in buildings

and other structures. Components such as columns and arches chiefly carry loads in

compression, but simultaneous bending is
almost always present. Bending moments are
caused by continuity, i.e., by the fact that

\

1M ¥

it }llTTTZC

building columns are parts of monolithic
frames in which the support moments of the
girders are partly resisted by the abutting
columns, by transverse loads such as wind
forces, by loads carried eccentrically on

column brackets, or in arches when the arch ~ H,—=% ,

axis does not coincide with the pressure line.
Even when design calculations show a
member to be loaded purely axially,
inevitable imperfections of construction will
introduce eccentricities and consequent

v 2

!

Va

|

Vo

Two-hinged portal frame with bending
moment diagram drawn on the tension side.

bending in the member as built. For this reason members that must be designed for

simultaneous compression and bending are very frequent in almost all types of concrete

structures.

When a member is subjected to combined axial compression P and moment M, such as in

the figure (a), it is usually convenient to replace the axial load and moment with an equal

load P applied at eccentricity e = M/P, as in
figure (b). The two loadings are statically
equivalent. All columns may then be classified in
terms of the equivalent eccentricity. Those having
relatively small e are generally characterized by
compression over the entire concrete section,
and if overloaded, will fail by crushing of the
concrete accompanied by yielding of the steel in
compression on the more heavily loaded side.
Columns with large eccentricity are subject to
tension over at least a part of the section, and if

P

(a)

(b)

overloaded, may fail due to tensile yielding of the steel on the side farthest from the load.

For columns, load stages below the ultimate are generally not important. Cracking of

concrete, even for columns with large eccentricity, is usually not a serious problem, and

lateral deflections at service load levels are seldom, if ever, a factor. Design of columns is

therefore based on the factored load, which must not exceed the design strength, as usual,

i.e.,

M, = M,

P, = B,
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The design limitations for columns, according to the ACI Code, Section 10.2, are as follows:
1. Strains in concrete and steel are proportional to the distance from the neutral axis.

Equilibrium of forces and strain compatibility must be satisfied.

The maximum usable compressive strain in concrete is 0.003.

Strength of concrete in tension can be neglected.

The stress in the steel is f; = E;e < f,,.

The concrete stress block may be taken as a rectangular shape with concrete stress

o vk wN

of 0.85f, that extends from the extreme compressive fibers a distance a = f,c, where
c is the distance to the neutral axis and where f3; as defined in ACI 10.2.7.3 equal:
B, = 0.85 —0.007(f, — 28) 0.65 <4, <0.85 (see page 23)

The eccentricity, e, represents the distance from the plastic centroid of the section to the
point of application of the load. The plastic centroid is obtained by determining the location
of the resultant force produced by the steel and the concrete, assuming that both are
stressed in compression to f,, and 0. 851, respectively. For symmetrical sections, the plastic
centroid coincides with the centroid of the section. For nonsymmetrical sections, the plastic
centroid is determined by taking moments about an arbitrary axis, as explained in example
below.

Example

Determine the plastic centroid of the section in figure. Take f; = 24 MPa, f, = 420 MPa.
Solution:

As(4 D 32)=3217 mm?

A(2 @ 32)=1608.5 mm? o6 ““ I s68 | o
.As‘l | A32|
1. It is assumed that the concrete is stressed :
in compression to 0. 85f": . PC—>|
F.=0. 85fC’Ag =0.85-24-500-350-10"2% = 350 432 K 2;332'
|
= 3570 KN | '
F. is located at the centroid of the concrete E !
ti t 250 f is A-A). I
section (a .mm rom axis ) _‘_228.54_'
2. Forces in steel bars:
FSl = Asl(fy - O 85f;-,) = A - 500 o
= 3217(420 - 0.85-24) - 1073 = T 1 T
= 1285.5KN r £ Fo

Fy, = Ay (f, — 0.85f)) =
= 1608.5(420 — 0.85-24) - 1073 = 642.8 KN
3. Take moments about A-A:

_3570-250 +1285.5- 66 + 642.8- 434

= 3570 + 1285.5 + 642.8 = 228.5mm
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6.6 LOAD-MOMENT (STRENGTH) INTERACTION DIAGRAM

When a normal force is applied on a short reinforced concrete column, the following cases

may arise, according to the location of the normal force with respect to the plastic centroid.

P4

Allowable P,
(max)

Load P,

e =0.003
€

€s=0
Zero tension (Compression)

Load-moment strength interaction diagram showing ranges of cases discussed in text.

1.

Axial compression (Py) — Point A. This is a theoretical case assuming that a large
axial load is acting at the plastic centroid; e = 0 and M,, = 0. Failure of the column
occurs by crushing of the concrete and yielding of steel bars. This is represented by
P, on the curve of Fig. a.

Maximum nominal axial load P,, ,,,,: This is the case of a normal force acting on the
section with minimum eccentricity. According to the ACI Code, P, 4, = 0.80P, for
tied columns and 0.85P, for spirally reinforced columns, as explained in before in this
chapter. In this case, failure occurs by crushing of the concrete and the yielding of
steel bars.

Compression failure: This is the case of a large axial load acting at a small
eccentricity. The range of this case varies from a maximum value of B, = B, ;4. to a
minimum value of P, = P}, (balanced load). Failure occurs by crushing of the concrete
on the compression side with a strain of 0.003, whereas the stress in the steel bars
(on the tension side) is less than the yield strength, f, (ﬁs < fy). In this case B, > P,
ande < g,.
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The strain distribution at Point B corresponds to the axial load and moment at the onset
of crushing of the concrete just as the strains in the concrete on the opposite face of the
column reach zero. Case B represents the onset of cracking of the least compressed side
of the column. Because tensile stresses in the concrete are ignored in the strength
calculations, failure loads below point B in the interaction diagram represent cases
where the section is partially cracked.
Region A—C - Compression-Controlled Failures. Columns with axial loads P, and moments
M,, that fall on the upper branch of the interaction diagram between points A and C
initially fail due to crushing of the compression face before the extreme tensile layer of
reinforcement yields. Hence, they are called compression-controlled columns.
4. Balanced condition (P,) — Point C: A balanced condition is reached when the
compression strain in the concrete reaches 0.003 and the strain in the tensile

. f . .
reinforcement reaches ¢, = E—y simultaneously; failure of concrete occurs at the
N

same time as the steel yields. The moment that accompanies this load is called the

L M
balanced moment, M,,, and the relevant balanced eccentricity is e, = P—b.
b

5. Tension failure: This is the case of a small axial load with large eccentricity, that is, a
large moment. Before failure, tension occurs in a large portion of the section, causing
the tension steel bars to yield before actual crushing of the concrete. At failure, the
strain in the tension steel is greater than the yield strain, €,, whereas the strain in the
concrete reaches 0.003. The range of this case extends from the balanced to the case
of pure flexure. When tension controls, P, < P, and e > e,,.

Point D - Tensile-Controlled Limit. Point D corresponds to a strain distribution with 0.003

compressive strain on the top face and a tensile strain of 0.005 in the extreme layer of

tension steel (the layer closest to the tensile face of the section.) The failure of such a

column will be ductile, with steel strains at failure that are about two and a half times

the vyield strain (for Grade-420 steel). ACl Code Section 10.3.4 calls this the tension-
controlled strain limit.

Region C-D - Transition Region. Flexural members and columns with loads and moments

which would plot between points C and D are called transition failures because the mode

of failure is transitioning from a brittle failure at point C to a ductile failure at point D,

corresponding respectively to steel strains of 0.002 and 0.005 in the extreme layer of

tension steel. This is reflected in the transition of the ¢ — factor, which equals 0.65 (tied

column) or 0.75 (spiral column) at point C and equals 0.9 at point D.

6. Pure flexure: The section in this case is subjected to a bending moment, M,,, whereas
the axial load is P, = 0. Failure occurs as in a beam subjected to bending moment
only. The eccentricity is assumed to be at infinity. Note that radial lines from the

- . M -
origin represent constant ratios of P—" = e = eccentricity of the load P, from the

n

plastic centroid.
Cases 1 and 2 were discussed in section 6.4 of this chapter, and Case 6 was discussed in
detail in Chapter 4. The other cases will be discussed later in this chapter.
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6.7 BALANCED STRAIN CONDITION — RECTANGULAR SECTIONS.

The balanced strain condition represents the dividing point between the “section
compression-controlled” and the “transition zone” of the strength interaction diagram (Point
C on the interaction diagram). Defined in the same manner as in Chapter 4, section 4.5, it is
the simultaneous occurrence of a strain of 0.003 in the extreme fiber of concrete and the

. f; .
strain g, = E—y on the tension steel.
S

r

e
It may be noted that in the case of i :
«—— o e e=g, -
bending moment without axial load, Lmastic
the balanced strain condition is not NA.~H ' centroid
permitted by ACI — 10.3.5. However, e | _o—
in the case of combined bending @ A
and axial load, the balanced strain 5 ’ p =p
condition is only one point on an bh +—@—- — - o— & 2
acceptable interaction diagram.
Cp 0.003 -9 —o—
- = y ;
4 0003+ ]Ec—y ‘ . J
N
Substituting E; = 200 000 MPa .
0.003 |
Cp = 7 d Cy ru
__Jy_ >
0.003 + 500 000
or T
600 J , _T
Y €
=600 +7, /e =0003
Force equilibrium requires ‘l
Py=Cc+Ci—T ©) d' s
d
where i
. e P =5
C. =0.85 f/ab = 0.85 f!B,cyb,
— I Actual stress distribution
"= Ak e " T
and if compression steel yields at ! \\
X Average = 0.85%'
balanced strain condition | M l ‘
c—d _ G = -
fs’=600< . >=fy T=Af, G TE:;
—a = B.‘ Cp —m

Cs = As(f, — 0.85 )

Thus the equation (*) becomes

P, = 0.85 f/Bicyb + Ay(f, — 0.85 f) — Asf,, (*%)
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The eccentricity e, is measured from the plastic centroid, which has been defined before in
this chapter. For symmetrical sections the plastic centroid is at the middepth of the section.
Rotational equilibrium of the forces is satisfied by taking moments about any point such as

the plastic centroid,

a
Pyep, = C; (d 37 d”) +C(d—d —d")+Td" (%)

a
or Pye, = M, = 0.85 f/ab (d -5 d") +AL(f, — 0.85 £)(d — d' — d") + Asf,d”
Equations (**) and (***) may be solved simultaneously to obtain P, and ¢,,.

The balanced eccentricity is

ey = Pb
Example !
Determine the eccentric balanced i )
compressive strength P, and the .
eccentricity e, for a balanced strain 3 05 25 b C §
condition on the section below. Take | T A e §
f! =20 MPa, f, =380 MPa. 3925 }
Solution: : =
\
600 ,
Cp = |\ d 5 d—d =475 mm ud;=62.5mm
600 + f, - >l
= ( 090 )537.5 = 329.1 — "
=600 + 380/ />~ 27 mm h = 600 mm ‘
ap = PiCp
ap, = 0.85-329.1 = 279.74 mm e, = &, = 0.0019 e Cp = 329.1mm
C.=0.85f/ab |
C,= 0.85-20-279.74-400-1073 =
= 1902.23 KN,
1= 0.00243 > = 0.
T = Af, = 1472.62- 380 - 107 = s = fou = 0.003
- 300mm i e, =300.7mm_ P,
= 559.6 KN b T VV
Check if compression steel yields :
: 0003<C_d’>> y ‘ E ‘
E. = L. = &y = — :
* c Y Es /\’g [YYYYYYYYYYY) ,
e d 1 0.85 f
' =600 >
or fs < - > > fy T (;Cl ICs
ap = 279.74 mn
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; = 0.003 (329'1 R 625) = 0.00243> 6, =2 = 330 __ 0019
BT 3201 ) © = E, T 200000
329.1—62.5
or f{ =600 (W) = 486.1 MPa > f, = 380 MPa

Compression steel yields. f{ = f, = 380 MPa
Cs = As(f, — 0.85 f) = 1472.62(380 — 0.85 - 20)10™% = 534.56 KN
P, =C.+C; —T =1902.23 + 534.56 — 559.6 = 1877.19 KN
For rotational equilibrium about the plastic centroid, for symmetrical sections, the plastic

centroid coincides with the centroid of the section,
a
Pyey = Cc (d - 5= d")+C(d—d' —d")+Td"

For symmetrical section, it can be written in the form

h a hoo oo
Prer =Ce(5-5) + (3= ) +7(3-)

600 279.74 600 600
1877.19 - e, = 1902.23 (T —— ) + 53456 (T — 62.5) +559.6 (T _ 62.5)
_ 5644671 _
® = Tg7719 _ O M

On the given section:

If B, > P, = 1877.19 KN or e < e, = 300.7 mm — the section is Compression-controlled
If B, < P, =1877.19 KN or e > e, = 300.7 mm — the section may be in the “transition
zone”.

If eislarge enough, the section would be tension controlled.

Example

Determine the eccentric balanced compressive strength P, and the eccentricity e, for a
balanced strain condition on the section below. Take f = 25 MPa, f, = 345 MPa.
Solution:

- (9 d—( 090 )440—2794
= \600+7,)" = \600 +3a5) " ~ /7

ap = fic, =0.85-279.4 = 237.5mm
C.=0.85f/ab = 0.85-25-237.5-300-1073 = 1514.1 KN,
T = Asf, = 942.47 - 345 - 107% = 325.15 KN

Check if compression steel A}, yields,
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1 A
g
S
N . (e}
(e}
o
I
e}
\
. d—d=380mm | d =60mm
« d = 440 mm .
- h =500 mm .
& =&, = 0001725 i: Cp = 2794 mum
£ < &y
ey = 0.00236 > ¢, qu = 0.003
\ HYYYYYYYYRYY!
T 0.85 f/
T Cs2 Cc I ICsl
~ap =237.5mm

c—d' fy , c—d'
c >ey=E— or  f4 =600 c =fy

N

e}, = 0.003 <

' =0.003 (279'4 — 60) 000236 > &, =2 = 3% _ 4001725
Es1 = 1 2794 )" & T E T 200000

, 279.4 — 60
or fsl = 600 (W) =471.15 MPa > fy = 345 MPa
Compression steel yields. f; = f,, = 345 MPa
Cs1 = A4 (f, — 0.85 f/) = 942.47(345 — 0.85 - 25)107% = 305.12 KN

Compression steel As,

c —Ch/Z) _

= 600( (279'4 _ 250) — 63.14 MPa < f, = 345 MP
fs2 = 2794 ) °> a<fy= a
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Cs, = AL, (f), —0.85 f) = 628.32(63.14 — 0.85 - 25)1073 = 26.32 KN
P,=C.+Cy; +Cs, — T =1514.1 + 305.12 + 26.32 — 325.15 = 1520.39 KN
For rotational equilibrium about the plastic centroid, for symmetrical sections, the plastic

centroid coincides with the centroid of the section,

h a oo hoo
Prer = Ce(5-5) +Ca 5= ) +7 (3~ )

500 237.5 500 500
1520.39 - e, = 1514.1 (T —_ T) +305.12 (T — 60) +325.15 (T _ 60)
_ 3184769
® = 52039 < MM

M, = P,e, = 1520.39 209.5 = 318.5 KN
p = pp = . 1000 . m

6.8 NOMINAL STRENGTH OF A COMPRESSION-CONTROLLED RECTANGULAR
SECTION (e < ep).

When the nominal compression strength P, exceeds the balanced nominal strength P,, or
when the eccentricity e is less than the balanced value e;, or when ¢; at the extreme layer of
steel at the face opposite the maximum compression face is less than ¢, the section is
“compression controlled”. The tensile force T will then be based on a tensile strain less than
&, and may actually be a compressive force if the eccentricity is small enough.

Example

Determine the nominal compressive strength P, for the section below for an eccentricity
e = 200 mm.

Take f; = 20 MPa, f, =380 MPa.

Solution:

Determine whether the given eccentricity e = 200 mm is larger or smaller than e,,.

The balanced strain condition was computed in the previous example (page 92) as
P, = 1877.19 KN

ep = 300.7mm
e =200mm < e, = 300.7 mm
The section is compression-controlled.

It is certain thate¢ > ¢, or f{ = f,,.

Cs = A5(f, — 0.85 f) = 1472.62(380 — 0.85 - 20) - 1072 = 534.56 KN

C, = 0.85 f/ab = 0.85 f/B,cb = 0.85-20-0.85¢ - 400 - 1073 = 5.78¢
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! A
A, : 2
3025 iP.C. Al £
AN | Yo Pl s ) 1. S
3025 ¥
i -
? Y
p d—d =475mm____ :d:' = 62.5mm
< d =537.5mm .
< h =600 mm -
& < & i: ¢ .
& > & £y = 0.003

Py
300mm g =200mm 100 mm

D
|

/\/i AAAAAAAAAAAS

0.85 f

'ﬂh_

537.5—c\ . . 474919.95 - 883.572¢
T = Af, = Ag - 600 (T) = 1472.62 - 600 (7) -1073 =

c

Taking moments about B,, ™ + ), Mp =0,

0.85c¢
[CC< >~ 100) — C,(100 — 62.5) — T(600 — 62.5 — 100)] .1073 =0

474919.95 — 883.572¢
c

0.85¢
[5.78c( 7~ 100) —534.56(100 — 62.5) — ( )(600 —62.5—-100)[1073 =0

207777.48
0.0024565¢2 — 0.578¢ — 20.046 — — + 386.56 =0

c3 —235.29¢? + 149202.81¢ — 84582730.77 = 0
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c¢" can be determined by trial or directly by a scientific calculator. Also, the solution of the
cubic equation can be obtained by using the well known Newton-Raphson method. This
method is very powerful for finding a root of f(x) = 0. It involves a simple technique, and
the solution converges rapidly by using the following steps:
1. Let f(c¢) = Ac® + Bc? + C ¢ + D, and calculate A, B, C,and D.
2. Calculate the first derivative of f(c):

f'(c) = 3Ac* + 2Bc + C
3. Assume any initial value of ¢, say, ¢y, and compute the next value:

€1 =C— f,(CO)
f(co)
4. Use the obtained value ¢, in the same way to get
C2=C — f,(C1)
f(c1)

5. Repeat the same steps to get the answer up to the desired accuracy. In the case of the
analysis of columns when compression controls, the value c is greater than the balanced c;,.
Therefore, start with ¢, = ¢, and repeat twice to get reasonable results.

Trial and error method
flo) = c3 —235.29¢% + 149202.81¢c — 84582730.77 =0

c fle)=0
330 -2.503-10’
350 -1.831-10’
400 +1.452-10°
390 -2.862-10°
395 -7.289-10°
396 -2.965-10°
397 +1.377-10°

396.5 -7.963-10*
396.6 -3.619-10*
396. 7 +7.259-10°

The reasonable result for ¢ is 396.6 mm.

Newton-Raphson method
f(c) = ¢®—235.29¢% + 149202.81¢c — 84582730.77
f'(c) = 3¢? — 470.58¢ + 149202.81

, _ fe)

Ci f(C) f (C) Ci+1 = (i f,(ci)
330 - 2.503-10’ 3.206-10° 408.075
408.075 5.076-10° 4.567-10° 396.961
396.961 1.208-10° 4.351-10° 396.683
396.683 73.614 4.346-10° 396.683

The reasonable result for ¢ is 396.6 mm as the result obtained by trial and error method.
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Check for Cj, it was assumed that compression steel yields (f; = f,),
c—d' 396.6 — 62.5
£ =600 —6 (—

396.6

Cs = 534.56 KN

C, =5.78¢c = 5.78 - 396.6 = 2292.35 KN

d— C) e (537.5 —396.6
396.6

- ) = 505.45 MPa > f, = 380 MPa — 0K

T =Af., fi= 600( ) = 213.16 MPa < f, = 380 MPa

T =1472.62-213.16-1073 = 313.91 KN
P,=C.+Cs—T =2292.35 + 534.56 — 313.91 = 2513 KN
M, = P,e = 2513-0.2 =502.6 KN -m
P, = ¢Fh,
The tension steel does not yield - f; = 213.16 MPa < f,, = 380 MPa or by check for

strain:

d— C) 0 <537.5 —396.6

& = 0.003 (T 396.6 > = 0.00107 < ¢, = 0.0019

So¢p =0.65 and,

P, =0.65-2513 = 1633.5 KN

Whitney Formula — compression-controlled sections. Biasti .
. Plastic centroid

] 3
Pn 14 As | AS'
/ |
|
P, Whitney formula for a 4 [ b
compression-controlled 7 : ? :
o\, section 7 i
A N Strength interaction E | /
3\ from statics analysis t 1 ¥
, \ —— ' —— = e
b —— "R _ J—
< h
M,  m
Typical comparison NA e I
between Whitney Tl

formula and a ‘
statics analysis !

l Vv

T

One approximate procedure that may be applied to the \\\ U.EISfE
case when the reinforcement is symmetrically placed in hi'l 1
single layers parallel to the axis of bending is the one

proposed by Whitney. —0.27d

N
/“'—0.54d —H\
Average value for
balanced strain condition
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Taking moments of the forces about the tension steel gives
d—d'
Pn<e+ . ) C. (d—2)+C(d d"

Whitney used for the depth of the rectangular stress distribution an average value based on

the balanced strain condition, a = 0.54d
C. = 0.85 f/ab = 0.85f,(0.54d)b = 0.459bdf,

and
¢ (- —) — 0.459bdf! (d —M) =L
2 3

When a section is compression-controlled, compression steel usually yields when
& = 0.003 at the extreme fibers in compression. Neglecting displaced concrete,

Cs = A;fy
Substituting in first equation for P, gives

1.,
3/cbd® | Ay (d—d)

b=—7 1
€+7(d—d) €+7(d—d)
From which
b = fibh A;fy
" 3he 3(d-d)h e +1
2 T 22 T

One of the boundary conditions of this relationship is that it must satisfy the condition
B, =P, at e=0
in which
P, = 0.85f/bh + 2f, A

3d—-d)h 1 _ 118
2d> 085
bh ! l
Je + Ashy — (Whitney formula)

n
3dhze+118 d— d’+05

which is Whitney formula for symmetrical steel with no correction for concrete displaced by
compression steel.
A more useful expression for Whitney formula in terms of dimensionless ratios may be
obtained by letting:

2A
Ay =bh, ¢h=d, Ag=A; (forsymmetrical reinforcement), pg = A—S, yh=d-d'
g

fe N Pgfy

| ORETNCIGE

P, =4
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Example
Resolve the previous example using Whitney Formula.

Solution:
_d_5375_ o e_200_ ... _d-d _5375-625_
=700 0896 35500703 YT =7%w - ©
242147262
Po= "4, ~7600-400
p =2 fe 4 Py
nTT913) e 2\ (e
Do D
20 0.0123 - 380 .
P, = (600 - 400) [-— - .10~% = 2589.2 KN
W) (0.333) + 1.18 (W) (0.333) + 1

Application of Interaction Diagram

py = s B2 0193 = 1.23%
97 4, 600400

for e = 200 mm = 0.2 m, choose P, = 1000 KN and M, = 200KN -m

Use structural analysis and design programs (such as Prokon, CSI Column, ..etc.) for
constructing interaction diagrams for the column section.

From the interaction diagram constructed in Prokon Program:

P, = 1650 KN, M, =335KN-m
= 0.65 P—P“—1650—25385KN
¢ =065, "¢ 0.65 ' ’
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| Shest

PROKON]|==

Software Consultants (Pty) Ltd Client
Internet: hitp://www.prokon.com

E-Mail : mail@prokon.com Calcs by

Checked by

Date

Rectanqular column design

Rectangular column design by PROKON. (RecCol Ver W2.3.05 - 18 Jul 2007)

Design code : ACI 318 - 2005

General design parameters:
Given:

h =600 mm

b =400 mm

d'x = 62.5 mm

d'y =62.5 mm

Lo=2.000 m

fc' = 20 MPa

fy = 380 MPa

Design chart for bending about the X-X axis:

Column design chart (X-X)

750

C11

=

500 | | |

5500

5000
4500

2m

4000

3500

3000
---------- Py= 1.23%

2500

2000 P = 1650 KN,

1600 —

o

o

o
0

N

D
i
0

X
500

Moment max = 1390 kNm @ 1010kN

7
600 /
800 /
100 /

1\30

|

140p0N

&
o
(=]
\
\
\
|
~
£
B
=

Axial load (kN)
1
200
g ‘%
e
40
EQ

-1000 =~

-1500

-2000
-2500

-3000
-3500

-4000

-4500

-5000

Bending moment (kNm)
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Another solution,

P [kN)
AB00------- e TR SRR P SR P R PP REY
A _iPmax) !
2500 ;
: ™ ™ .
i ¥
1600 = —+x
1500 ;
-] : * . .
E 400 x 600 mm
R00- . 123-"‘l reinf.

. 430
F [kM-rn]

pg = 1.23%
for e = 0.2m, choose B, = 1500 KN and M, =300 KN -m

From the interaction diagram constructed in PCA-column Program:

P, = 1600 KN, M, =320KN-m

= 0.65 P—P“—1600—24615KN
¢ =065, "¢ 0.65 ' ’
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6.9 NOMINAL STRENGTH OF A RECTANGULAR SECTION HAVIN (e > e).

When the nominal compression strength P, is less than the balanced nominal strength P,, or
when the eccentricity e is greater than the balanced value e;, or when the net tensile strain

& at the extreme layer of steel at the face opposite the maximum compression face is
greater than ¢, = Z—y, the section is more like a beam than a column (see interaction
S

diagram in section 7.6).

Example

Determine the nominal compressive strength P, for the section below for an eccentricity
e = 500 mm.

Take f; = 20 MPa, f, =380 MPa.

Solution:

Determine whether the given eccentricity e = 500 mm is larger or smaller than e,,.

The balanced strain condition was computed in the previous example (page 92) as
P, = 1877.19 KN, ep = 300.7 mm

e =500 mm > e, = 300.7 mm,

therefore, the strain & on the tension steel exceeds ¢,. It is assumed (initially) that the
strain & on the compression steel is at least equal to the yield strain gy although the validity

of the assumption must be verified before the solution is accepted.

C. = 0.85 f/ab = 0.85 f/B,chb = 0.85-20-0.85c-400- 1073 = 5.78¢
Cs = A5(f, — 0.85 f) = 1472.62(380 — 0.85 - 20) - 1073 = 534.56 KN
T = Asf, = 1472.62-380- 1073 = 559.6 KN
Force equilibrium requires
P,=C.+Cs—T = 5.78¢ + 534.56 — 559.6 = 5.78¢ — 25.04

Taking moments about the tension steel ). My, =0,

d—d' a ,
Pn<e+ . >=Cc(d—z)+Cs(d—d)

537.5 — 62.5 0.85¢

(5.78¢ — 25.04) (500 + —) — 5.78¢ (537.5 _ T) +534.56(537.5 — 62.5)
537.5 — 62.5 0.85

[(5.78c — 25.04) <500 + f> = 5.78¢ (537.5 _ TC) +534.56(537.5 — 62.5)| - 1072

4.26c —18.47 = 3.11c — 0.002457¢? + 253.92

0.002457¢% 4+ 1.15¢ — 272.39 = 0
c? +468.1c — 110862.8 = 0
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—468.1 + \/468.12 —4-1-(—110862.8) —468.1+ 814
“12 = 2 - 2
c=17295mm > 0

Check for the initial assumption for e = ¢, or fJ =f,

c—d 172.95 - 62.5
fs =600 p = 600( 172.95 ) = 383.17 MPa > f,, = 380 MPa

Take f; = f,, = 380 MPa as assumed before.
P, =5.78-172.95 + 534.56 — 559.6 = 974.61 KN

b = 400 mm

d—d =475mm | d|=62.5mm

d =537.5mm

h =600mm

& > & c

€ = 0.003

e =500mm

d—-d

e'=e+

AEEYYYYYYYYYYY!
0.85 f/

C. C,
a = 0.85c

—~ -
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In addition we can calculate M,, = P,e = 974.61 - 5001073 = 487.31 KN - m

Check for tension steel strain:

= 0.003 (d _ C) = 0.003 (537'5 _ 17295) = 0.0063 > 0.005
&= c )~ 172.95 - '

& = 0.0063 > 0.005 - tension controlled section and ¢ = 0.9
P, = ¢P, =09-974.61 = 877.15KN
M, = ¢M, = 0.9-487.31 = 438.58 KN -m

Approximate Formulas — Rectangular Sections Having e > e,,.

Using symbols in the same previous procedure to determine P, for rectangular section with
e > e, we get the general solution in the form:

el
B, =0.85f/bd<{p'(m—1) —pm + (1 - E)

2
e e , ) d
+\/<1_E> +2l<g>(pm—pm+p)+p(m—1)<1—g>l
When p = p' then

P, = 0.85f.bd +1 e,+ 1 e’2+2 DI1 d +e,

where
_AS I_AIS _ fy ;o +d—d’
P=ba P = ba’ ™= 0855 ¢=erT

e’ — the distance between the applied load and tension steel.

For the previous example:

_ A 1262
P=P =pd~200-5375 =
£, 380

- - = 22.35

M= 085f ~ 0.85-20
d—d 537.5 — 62.5

e'=e+ =500+f=737.5mm
P =0.85-20-400 - 537 5{ 0.00685 41— 575,
no ' ' 537.5

+ (1 737'5)2 +2-0.00685 [(22 35—-1) (1 62.5 ) + 7375 1073 =971.62 KN
537.5 ' ' 537.5)  537.5 N '
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Application of Interaction Diagram

0, = A _ 252 G 0123 = 1.23%
974, 600400

for e = 500 mm = 0.5 m, choose P, =500 KN and M, =250KN-m

Use structural analysis and design programs (such as Prokon, CSI Column, ..etc.) for
constructing interaction diagrams for the column section.

From the interaction diagram constructed in PCA-column Program:

P, = 830 KN, M, = 415KN -m
=0.9 P—P”—830—9222KN
¢ =09, T 09 7T ’

R

2500+

—+x

1500

» » »
830
: ; ' : : ' ; ; : 400 x 600 mm
1 R S A S R e A P 8 S .
H i \ . : . 1.23% reinf.

50 om0 om0 0 om0 4154
' ' ' i : : M [kN-m]

6.10 DESIGN FOR STRENGTH. PRACTICAL DESIGN APPROACH.

Generally, designers have access to published interaction diagrams or computer programs to
compute interaction diagrams based on a sectional analysis for use in design. Occasionally,
this is not true, as, for example, in the design of hollow bridge piers, elevator shafts, or
unusually shaped members. Typical interaction charts are given here.
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4.0

3.5

3.0

25

, ksi

2.0

P,
bh

1.5

1.0

0.5

Fig. A-6a

Nondimensional interaction diagram for rectangular tied columns with bars in two faces: . = 4000 psi and y = 0.60.
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E-4-60-0.75
/ [ ]
40 | fo=4ksi ) h
I Yh
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/ fy = 60 ksi - |
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( e : |
-pg = 0.04 AN LA - |
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f\‘\ \n. ‘ 9
—pg = 0.03 AN ‘ |
/,g \\ J eh‘} =0.3 i
- i N, 27N 1
B L p, = 0.01 INGEAYARNERYE e/h=04 ]
:_ Pg - ! up + . \\ /\\: P =
o< N\
S|e 20 ERNYA N\ \ A\ e/h =05
fs = 0 / \ f /// = /
/ \ 4 | L
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P L] ]
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N / / /
A AT 7z 7 / 4
11 pd pd / b P
// ;/ t/ 4/ 4/
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Mo i
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Fig. A-6b

Nondimensional interaction diagram for rectangular tied column with bars in two faces: f. = 4000 psi and y = 0.75.
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Fig. A-6¢

Nondimensional interaction diagram for rectangular tied column with bars in two faces: f/ = 4000 psi and y = 0.90.
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Fig. A-7a

Nondimensional interaction diagram for rectangular tied column with bars in two faces: f.' = 5000 psi and y = 0.60.
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Fig. A-7b

Nondimensional interaction diagram for rectangular tied column with bars in two faces: f;. = 5000 psi and y = 0.75.
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Fig. A-Tc

Nondimensional interaction diagram for rectangular tied column with bars in two faces: f. = 5000 psi and y = 0.90.
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Nondimensional interaction diagram for rectangular tied column with bars in two faces: f. = 6000 psi and y = 0.60.
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Nondimensional interaction diagram for rectangular tied column with bars in two faces: . = 6000 psi and y = 0.75.
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Nondimensional interaction diagram for rectangular tied column with bars in two faces: f, = 6000 psi and ¥ = 0.90.
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Fig. A-9a

Nondimensional interaction diagram for rectangular tied column with bars in four faces: £, = 4000 psi and y = 0.60.
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Nendimensional interaction diagram rectangular for tied column with bars in four faces: f. = 4000 psi and ¥ = 0.75.
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Fig. A-9c
Nondimensional interaction diagram for rectangular tied column with bars in four faces: f, = 4000 psi and y = 0.90.
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Fig. A-10a

Nondimensional interaction diagram for rectangular tied column with bars in four faces: . = 5000 psi and y = 0.60.
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Nondimensional interaction diagram for tied column with bars in four faces: .. = 5000 psi and y = 0.75.
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Nondimensional interaction diagram for tied column with bars in four faces: f,. = 5000 psi and y = 0.90.
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Nondimensional interaction diagram for tied column with bars in four faces: f. = 6000 psi and y = 0.60.
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Fig. A-11b

Nondimensional interaction diagram for tied column with bars in four faces: f. = 6000 psi and y = 0.75.
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Fig. A-11c

Nondimensional interaction diagram for tied column with bars in four faces: f. = 6000 psi and y = 0.90.
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Fig. A-12a

Nondimensional interaction diagram for circular spiral column: £, = 4000 psi and y = 0.60.
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Nondimensional interaction diagram for circular spiral column: f;. = 4000 psi and y = 0.75.
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Nondimensional interaction diagram for circular spiral column: f. = 4000 psi and y = 0.90.
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Nondimensional interaction diagram for circular spiral column: f. = 5000 psi and y = 0.60.
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Fig. A-13b

Nondimensional interaction diagram for circular spiral column: ;. = 5000 psi and y = 0.75.

128



Reinforced Concrete | Dr. Nasr Abboushi

C-5-60-0.9
4.5 ==t i f. = 5 ksi h
pg = 0.05 f, = 60 ksi Yh
i SN Telh = 0.1 y=09
0.04 \\‘ 4
L = M
4.0Pg \\ Y. o =
My, M
= RERN L= e P
[pg = 0.03 N r“i
I < < |
3 5 M y P \\\ \
| » = 0.02 e E L N N e/h=0.2
pg '14 \\ \
/ N \\ N L
I 2 ™, ‘\ \
3.0Tp, = 0.01 SA LN N NCIA TN
£ =0 ~ ™~ N )4 N A
® N, N N AR N A
AN \‘ AN N e/h=0.3
N \, 1
= 145 \C N - >
-\:" b -+ ‘\ e \\. 1
€| o == Y \\pe N T A
3[< / fo = 0.5%, N\ .A-\ g N /‘ﬂ’ ol
3
2.0 " k L]
A\ A -1 1IN e/h=05_] |
E\_ /) \ //\\ N\
=
-/ ' /-. \ . ™~ \ L e 5y — =
1.5 Comp. Cont. Limit AP R /é\
X )= N elh=07
r \ 1 A\ L —
= L] A1 |
1.0 - V= A -
Zd 0 = —+e/h =171
Tens. Cont. Limi P - \
- T INL A1 /=
E = [ — T -
05 = — // // ,..-'-""'.‘- 4/ / — e l
w ] ] —"1 j/ 1/ L~ oy
T T LT A pd 1~k
T 1 r A P
// 1/ /, /
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
il , ksi
Fig. A-13c

Nondimensional interaction diagram for circular spiral column: £, = 5000 psi and y = 0.90.
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Fig. A-14a

Nondimensional interaction diagram for circular spiral column: f,. = 6000 psi and y = 0.60.
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Nondimensional interaction diagram for circular spiral column: f, = 6000 psi and y = 0.75.
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Nondimensional interaction diagram for circular spiral column: . = 6000 psi and y = 0.90.
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The design of eccentrically loaded columns using the strain compatibility method of analysis
described requires that a trial column be selected. The trial column is then investigated to
determine if it is adequate to carry any combination of P, and M,, that may act on it should
the structure be overloaded.
While a simple computer program or spreadsheet can be developed, based on the strain
compatibility analysis, to calculate points on the design strength curve, and even to plot the
curve, for any trial column, in practice design aids are used such as are available in
handbooks and special volumes published by the American Concrete Institute, and the
Concrete Reinforcing Steel Institute,. They cover the most frequent practical cases, such as
symmetrically reinforced rectangular and square columns and circular spirally reinforced
columns. There are also a number of commercially available computer programs (e.g.,
pcaCOLUMN, PROKON, CSI COLUMN ... etc.).
Graphs A.6 through A.14 (pages 106-132) are representative of column design charts, in this
case for concrete with f/ = (4 —6) ksi and steel with yield strength f,, = 60 ksi, for
varying cover distances. Graphs A.6 through A.8 are drawn for rectangular columns with
reinforcement along two opposite faces. Graphs A.9 through A. 11 are for rectangular
columns with reinforcement distributed around the column perimeter. Circular columns
with bars in a circular pattern are shown in Graphs A. 12 through A. 14.
Instead of plotting P, versus M,,, corresponding parameters have been used to make the
charts more generally applicable, i.e., load is plotted as

oP,

A ’
while moment is expressed as

PM,,
Agh’
Families of curves are drawn for various values of p, = As /A, between 0.01 and 0.08. The

graphs also include radial lines representing different eccentricity ratios e/h, as well as lines
representing different ratios of stress f;/f, or values of strain & = 0.002 (compression-
controlled limit), and &, = 0.005 (tension-controlled limit) in the extreme tension steel.
Charts such as these permit the direct design of eccentrically loaded columns throughout the
common range of strength and geometric variables. They may be used in one of two ways as
follows. For a given factored load P, and equivalent eccentricity e = M, /P,:

1. Select trial cross-sectional dimensions b and h.

2. Calculate the ratio y based on required cover distances to the bar centroids, and
select the corresponding column design chart.
Calculate ¢ P, /A4 and ¢M,,/A,h, where A, = bh (for rectangular section)
From the graph, for the values found in (3), read the required reinforcement ratio p.
Calculate the total steel area Ag; = pgyAg.
Select the reinforcement ratio p.
Choose a trial value of h and calculate e/h and y
From the corresponding graph, read ¢F, /A, and calculate the required A.
Calculate b = Ay /h.

W N U kW
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10. Revise the trial value of h if necessary to obtain a well-proportioned section.
11. Calculate the total steel area A, = pgdg,.

Important Note:

The interaction diagrams are drawn for material’s strengths f. and £, in ksi unit, whereas
the material’s strengths are usually used in Palestine in MPa.

To convert from MPa to ksi: 1 MPa = 0.145 ksi

Example

Design a rectangular tied column with bars in two faces to support the following loads:
P, = 450 KN, P, =500 KN,
Mp =80 KN -m, M; =108 KN -m

Solution:

P, =1.2P, +1.6P, =1.2-450+ 1.6-500 = 1340 KN
M, =12Mp +1.6M; =1.2-80+ 1.6-108 = 268.8 KN -m
1. Select the material properties, trial size, and trial reinforcement ratio. Select
fy = 60 ksi, and f = 4 ksi . The most economical range for p, is (1-2)%. Assume

that p;, = 0.015 for the first trial value:

1
fe =4ksi=4-———=27.6 MPa

0.145
fy = 60 ksi = 60 ﬁ = 413.8 MPa

P, = ¢ 0.8[0.85f (4, — As) + Asefy], ¢ =0.65
From where

P, 1340-103
49 = ¢ 0.8[0.85fc’(1 — pg) + ngy] = 0.65- 0.8[0.85-27.6 (1 — 0.015) + 0.015 - 413.8] -

= 87904.3 mm?
Assume A, = bh, h =500 mm
then b= ﬁ = % = 175.8 mm.
h 500

Choose h = 500 mm, and b = 200 mm

Instead of first trial value for 4, its acceptable to assume directly one dimension such as
h = 500 mm and continue with step 2 and 3 to determine the width b .

2. Compute the ratio e/h:

=—2="""12-02
© =P, T 1340 m
e_0.2_04
h 05

Yy — the ratio of the distance between the centers of the outside layers of bars to the overall
depth of the column. Assume & 25 for bars.
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d—d 500—2-40—-2-10-25
Yy = P 00 = 0.75
The interaction diagrams are given for y = 0.6, y = 0.75, and y = 0.9. when y is different
from these values, then it will be necessary to interpolate. Also, because the diagrams only
can be read with limited accuracy, it is recommended to express y with only two significant

figures.
3. Use interaction diagram A-6b to determine p,. The interaction diagrams are entered
with
¢P, B, 1340-103
—=—=——X0.145 =194
Ay, Ag;  500-200

$M, M,  268.8-10°
Agh ~ Agh~ 500-200- 500

From the interaction diagram p, > 0.05 which is not economic. Change the dimensions of

x 0.145 = 0.78

the column. From the interaction diagram, try p, = 0.02 then
¢P, P, 1340-103
—=127=—=—7—"—0.145 = b =306mm

Ay A, 500-b

Take column dimensions: h = 500 mm, b = 350mm

4. Use interaction diagram A-6b to determine p, for the selected dimensions:
h =500 mm, b = 350 mm. The interaction diagrams are entered with
¢P, P, 1340-103
E=E=WX0145 =1.11
pg = 0.013 > ppip, = 0.01 — OK
5. Select the reinforcement:
Age = pgAg = 0.013 - 500 - 350 = 2275 mm?

Take 6 @ 25 with A = 2945.2 mm? > A, = 2275 mm? , three bars in each side.

A
g
g
325 325 3
o
Il
K
\/
L, d-d=375mm | d|=625mm
< d =437.5mm .
- h =500mm .
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OR
Take 4 @ 25 + 2 @ 20 with A; = 1963.5 + 628.3 = 2591.8 mm? > A, = 2275 mm?, three

bars in each side.

A
g
2325 2025 g
o
mn
1220 1220 °|’|’
Q9
\/
. d-d'=375mm | d|=625mm
< d =437.5mm .
< h =500mm .

OR
Take 6 @ 22 with A; = 2280.8 mm? > A, = 2275 mm?, three bars in each side.

OR
Take 8 @ 20 with A; = 2513.3 mm? > A, = 2275 mm?, four bars in each side.

Note that in last two combination of bars (6 & 22) or (8 & 20) the ratio y will be different
when using these bars arrangement, it will be greater than 0.75, which gives less p.

Check for spaces between bars.

Example

Design a rectangular tied column with bars in four faces to support the following loads :
Pp = 450 KN, P, =500 KN,
My, =80 KN -m, M; =108 KN -m

Solution:

P, =1.2P, + 1.6P, = 1.2 450 + 1.6 - 500 = 1340 KN
M, =12Mp +1.6M, = 1.2-80 + 1.6 - 108 = 268.8 KN - m

1. Select the material properties, trial size. Select f,, = 60 ksi, and f = 4 ksi .

Assume h = 500 mm.

136



Reinforced Concrete | Dr. Nasr Abboushi

2. Compute the ratio e/h:

Y — the ratio of the distance between the centers of the outside layers of bars to the overall

depth of the column. Assume & 25 for bars.
_d—d’_500—2-40—2-10—25

Y= h 500 =075
3. Use interaction diagram A-9b to determine p,.
From the interaction diagram, try p, = 0.02 then
% =112 = i= MO.MS = b =347 mm
Ag Ag 500-b

Take column dimensions: h = 500 mm, b = 350 mm

4. Use interaction diagram A-9b to determine p, for the selected dimensions :
h =500 mm, b = 350 mm. The interaction diagrams are entered with

¢P, P, 1340-10°
=t o T %0145 = 1.11
A; Ay 500350

py = 0.018 > pp, = 0.01 — OK

5. Select the reinforcement:
A = pgAy = 0.018 - 500 - 350 = 3150 mm?

Take 4 @ 25 + 4 & 20 with A; = 1963.4 + 1256.6 mm? = 3220 mm? > A, = 3150 mm?2.

:165 mm > 150 mm

g
g 7y
o
3 ®
v g
4325 g
= 2
=1 " 4220 o
oy Il
@ @ =
A
., d-d'=375mm | d|=625mm
§ d =437.5mm .
- h =500 mm S
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OR
Take 16 & 16 with A, = 3217 mm? > Ay, = 3150 mm?.

80 mm < 150 mm

42.5mm < 150 mm

b =350mm

h =500 mm R

Note that in last combination of bars (16 & 16) the ratio y will be different when using this
bars arrangement, it will be greater than 0.75, which gives less p,.

6. Try another section taking h = 500, b = 400 mm.
Use interaction diagram A-9b to determine p, for the selected dimensions. The

interaction diagrams are entered with
¢P, P, 1340-103
— =—=————x0.145 = 0.97
A, Ay 500-400
pg = 0.013 > pp;, = 0.01 — OK

7. Select the reinforcement:
Age = pgAgy = 0.013 - 500 - 400 = 2600 mm?

Take 4 @ 18 + 4 @ 16 with A; = 1017.8 + 1608.4 mm? = 2626 mm? > Ay, = 2600 mm?.

110 mm < 150 mm

77 mm < 150 mm

b =400 mm

h =500mm N

A
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Example

Design a rectangular tied column with bars in four faces to support the following loads:
P, =750 KN, P, = 1000 KN,
Mp = 100 KN - m, M; =150 KN -m

Take f, = 414 MPa ~ 60 ks, f; =28 MPa =~ 4 ksi

The dimension h = 650 mm.
Solution:
P, =12Pp,+1.6P, =1.2-750+ 1.6-1000 = 2500 KN
M, =12Mp +1.6M; =1.2-100+ 1.6-150 =360 KN -m

1. Compute the ratio e/h:

_Mu_ 360 — 0.144
= T2500 M
e 144 022
h 650 '
e . ¢Mn . ¢)Pn .
To construct the o line, take value 0.22 on oz aXis and value 1.0 on . aXis.

Yy — the ratio of the distance between the centers of the outside layers of bars to the overall
depth of the column. Assume & 25 for bars.
_d—d’_650—2-40—2-10—25
h 650

Because the interaction diagrams are given for y = 0.75 and y = 0.9 it will be necessary to

Y = 0.81

interpolate. Also, because the diagrams only can be read with limited accuracy, it is
recommended to express with only two significant figures.

2. Use interaction diagrams trying p, = 0.02:
Diagram A-9b (fory = 0.75).

*h_h_
4y Ay
Diagram A-9c (fory = 0.9).
P, P,
Ph_ L _ 1.8
4y Ay

Use linear interpolation to compute the value for y = 0.81

PP, ( 1.8—1.7

P for (y=0.81) = 1.7 + ) (0.81 — 0.75) = 1.74

A, 0.9-10.75
(0] 1.8-1.7
or E for (y=0.81) =18 - (m> (0.9 —0.81) = 1.74
Ph _ 1.74 = L 25L-1030_145 = b=321mm
Ay Ay 650 - b

Take column dimensions: h = 650 mm, b = 300mm
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3. Use interaction diagram A-Sb and A-9c to determine p, for the selected dimensions :
h=650mm, b= 300mm.
¢P, P, 2500-103
A, "4, " 650300
Diagram A-9b (fory = 0.75), pg, = 0.027
Diagram A-9c (fory = 0.9), p; = 0.022
0.027 — 0.022
0.9 —0.75
4. Select the reinforcement:
Age = pgAg = 0.025- 650 - 300 = 4875 mm?

x 0.145 = 1.86

py (y=0.81) = 0.027 — ( )(0.81 —0.75) = 0.025 > ppin = 0.01 — OK

Take 4 @ 25 + 8 @ 22 with A; = 1963.5 + 3041.1 = 5004.6 mm? > Ay, = 4875 mm?2.

152 mm > 150 mm
g
g :
4 IF . L q
v 425 g
g S
S 822 S
N; o
© I
L) o 9 =
\
- h =650 mm -
Example
Design a circular spiral column section to support the following loads:
P, = 3000 KN
M, = 360 KN -m
Solution:

1. Try D = 600 mm

2. Compute the ratio e/h:
M, 360

=t 012
¢ =", T 3000 m
e_120_ .

h 600
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Y — the ratio of the distance between the centers of the outside layers of bars to the overall

depth of the column. Assume J 25 for bars.
_d—al’_600—2-40—2-10—25_079
Y= T 600 e

Because the interaction diagrams are given for y = 0.75 and y = 0.9 it will be necessary to

interpolate.
3. Use interaction diagram A-12b and A-12c to determine p, for the selected diameter:
D = h = 600 mm.
¢P, B, 3000-10°

— == x0.145 = 1.54
Ay A 716202
¢M, M, _ 360-10°
== x 0.145 = 0.31
2
Agh ~ Agh ~ w6002

4
Diagram A-12b (fory = 0.75), py < 0.01 — Not OK

Diagram A-12c (fory = 0.9), p, < 0.01 — Not OK.

4. Try D = h =550mm

e_120_022
h 550

e . M . P, .
To construct the o line, take value 0.22 on (Zh; axis and value 1.0 on % axis.

_d—d 550-2-40-2-10-25
V=7 T 550 =

Because the interaction diagrams are given for y = 0.75 and y = 0.9 it will be necessary to

0.77

interpolate.
5. Use interaction diagram A-12b and A-12c to determine p, for the selected diameter:

D = h =550 mm.

P, P, 3000103
—=—=——%x0.145 =1.83
A, A nSi)OZ

&M, M,  360-10°

= = 2
Agh  Agh HSEO 550
Diagram A-12b (fory = 0.75), pg; = 0.0232 > 0.01 — OK.

Diagram A-12c (fory =10.9), p, = 0.0185 > 0.01 — OK.

0.0232 — 0.0185
0.9-10.75

x0.145 =04

py (y=0.77) = 0.0232 — ( ) (0.77 = 0.75) = 0.0226 > ppin — OK

6. Select the reinforcement:
2

T
Age = pgAy = 0.0226 - = 5369.4 mm?

Take 11 & 25 with A, = 5400 mm? > A, = 5369.4 mm?.
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For all previous examples, the ties design and the check for ACI requirements must be
provided as in examples for concentrically loaded columns (pages 81-84):
e Design of Ties:

Use ties @ 10 with spacing of ties shall not exceed the smallest of:
1. 48 times the tie diameter,
2. 16 times the longitudinal bar diameter,
3. the least dimension of the column.
e Check for code requirements:
1. Clear spacing between longitudinal bars:
2. Gross reinforcement ratio, 0.01 < Pg < 0.08
Number of bars.
Minimum tie diameter.

Spacing of ties.

o v B~ w

Arrangement of ties.
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6.11 BIAXIALLY LOADED COLUMNS.

The analysis and design of columns under eccentric loading was discussed earlier in this
chapter, considering a uniaxial case. This means that the load P, was acting along the
Yy — axis, causing a combination of axial load B, and a moment about the x — axis equal to
M, = B,e,, or acting along the x — axis with an eccentricity e, causing a combination of
an axial load P, and a moment M,,, = P, ey.

Y
! 4
+P, y .
g R .‘
l-———e, +P
e . - ” T
y e ¢ o ® [ Y 2 \ /
A | . d
PC * p _ )
X - + - X X + + Fq X ——t—a — X
® l [ ] 4
A A A; L
o ¢ o [ M ] . ™
' | I 2
i |
¥ | 4 Y
Uniaxial bending with load P, Uniaxial bending with load Pn Biaxial bending.

along the y-axis with eccentricity e, along the x-axis, with eccentricity ey.

If the load P, is acting anywhere such that its distance from the x — axis is e, and its
distance from the y — axis is e,, then the column section will be subjected to a combination
of forces: an axial load B, and a moment about the x — axis = M,, = F,e,, and a moment
about the y — axis = M,, = B,e, .The column section in this case is said to be subjected to
biaxial bending. The analysis and design of columns under this combination of forces is not
simple when the principles of statics are used. The neutral axis is at an angle with respect to
both axes, and lengthy calculations are needed to determine the location of the neutral axis,
strains, concrete compression area, and P,

internal forces and their point of P M,

application. Therefore, it was necessary i::i:g:‘ion

N/

AN
4.\'\\\\! \ M

ocd contour

My, Moy

to develop practical solutions to estimate Plane at constant £, (0A)

the strength of columns under axial load
and biaxial bending. The formulas
developed relate the response of the
column in biaxial bending to its uniaxial Failure
. . surface
strength about each major axis.
The biaxial bending strength of an axially
loaded column can be represented by a

three-dimensional interaction curve, as

shown in figure. The surface is formed by
a series of uniaxial interaction curves

. . Biaxial interaction surface.
drawn radially from the B, — axis. The
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curve M, represents the interaction curve in uniaxial bending about the x — axis, and the
curve M,, represents the curve in uniaxial bending about the y — axis. The plane at
constant axial load P, represents the contour of the bending moment M,, about any axis.
Different shapes of columns may be used to resist axial loads and biaxial bending. Circular,
square, or rectangular column cross-sections may be used with equal or unequal bending
capacities in the x — and y —directions.

6.12 SQUARE AND RECTANGULAR COLUMNS UNDER BIAXIAL BENDING. BRESLER
RECIPROCAL METHOD.

Square or rectangular columns with unequal bending moments about their major axes will
require a different amount of reinforcement in each direction. An approximate method of
analysis of such sections was developed by Boris Bresler and is called the Bresler reciprocal
method. According to this method, the load capacity of the column under biaxial bending
can be determined by using the following expression (Bresler equation):

1 1 1 1

—_—=—t — - —

Pu Pux Puy Puo

1 1 N 1 1
or _—= -

Pn an Pny Pno
where

P, — factored load under biaxial bending,

B, — factored uniaxial load when the load acts at an eccentricity e, and e, = 0,
B,y — factored uniaxial load when the load acts at an eccentricity e, and e,, = 0,
B,, — factored axial load whene, = e, =0

Py Pux _@ Puo

Pn=$ an=?' ny = ¢' Bro b

The uniaxial load strengths P, P,,, and P,, can be calculated according to the equations
and method given earlier in this chapter. After that, they are substituted into the above
Bresler equation to calculate P,. The Bresler equation is valid for all cases when B, is equal
to or greater than 0.1P,,. When P, is less than 0.1P,,., the axial force may be neglected and
the section can be designed as a member subjected to pure biaxial bending according to the
following equations:

M M
<
M, M,
M M
or nx oy <1
Mox Moy
where



Reinforced Concrete | Dr. Nasr Abboushi

M, = P,e, — design moment about the x — axis
M, = B,e, — design moment about the y — axis
M, and M,, — uniaxial moment strengths about the x — and y — axes

Myx My M, M,
My = ¢’ My = b’ Mox:?' Moy:?
The Bresler equation is not recommended when the section is subjected to axial tension
loads.
Example

Determine the nominal compressive strength P, of the short tied column, which is subjected

to biaxial bending.

e, = 200 mm, and ey = 100 mm
Take f, = 414 MPa ~ 60 ksi, f! = 28 MPa = 4 ksi
y e, = 200mm
: g
5 . S
° * e 3
i
§ 828 ! O—7—
[e] X : Q)>\
g ..... - ...._._._._._._._.T ............... _.._ ........ - x
Il !
< E
[ ® o
\ .
y
- h =600mm
Solution:
1. Calculate pg:
Ay 4926 0.0205
Pe =4, T 600-400
2. For x direction (bending about y —axis):
e compute the ratio e, /h:
ex 200 0.33
h 600

e compute the ratioy:

145



Reinforced Concrete | Dr. Nasr Abboushi

_d—d'_600-2:40-2:10-28_
V== = 600 -

e draw line of il—" = 0.33 on diagram A-9b (for y = 0.75 ) and diagram A-9c (for y = 0.9).

Diagram A-9b (fory = 0.75).

Diagram A-9c (fory = 0.9).

Use linear interpolation to compute the value for y = 0.79

il ( —079)—132+(1'45_1'32)(079 0.75) = 1.35 ksi
Ag for(y=079)=1 09-075/"" 90 = 490 st
PP A iu5-135 = p 1357600400 . osiskN
A, 600-400 T W 0.145 B '
Py 22345

= 3437.7 KN

P. =
) 0.65
Note that ¢ = 0.65 — compression-controlled section (see interaction diagrams).

3. For y direction (bending about x —axis):

e compute the ratio e, /h:

ey_100_025
h 400

e compute the ratioy:

_d—d' _400-2:40-2-10-28
V== T 400 -

e line of %y = 0.25 on diagram A-9a (for y = 0.6 ) and diagram A-9b (for y = 0.75).

Diagram A-9a (fory = 0.6).

P, P
Ph_ L _ 1.49
44 g
Diagram A-9b (fory = 0.75).
OB _ B _ 16
4y Ay
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Use linear interpolation to compute the value for y = 0.68

il (—068)—149+(1'6_1'49>(068 0.6) = 1.55 ksi
a, Jory=068)=1 0.75— 0.6/ )= o Kt

PP, Pe 15— 155 p 155600400
. = 1. et =
we 0.145

= 1073 = 2565.5 KN
A, 600400

_ B, 25655 2046.9 KN
g 065 '

Note that ¢ = 0.65 — compression-controlled section (see interaction diagrams).

4. Determine P,, for the section dimensions : h =600mm, b= 400mm, and
pg = 0.0205:
Poo = Ag[0.85£/(1 = py) + pyfy] =

= 600 - 400[0.85 - 28(1 — 0.0205) + 0.0205 - 414]1073 = 7631.8 KN

Note that P,, can be defined directly

Pn
. . . erax: . }Dc,-forsira
from interaction  diagrams  when i, i
P -
— — Com sion fail
ex — ey — O Pﬂ_ o ; pression failure range
=/
. L14]
From diagrams A-9 for any value of y & f Radial lines show constant e = P”
ol ¥/ n
¢B, w| !
— =13 [ !
A ] Load
g | pathfor
| gvene
P 3 Ag 3 600 - 400 10-3 f
=5 == X = ! Tension fail
no ension fallure range
¢ 0145 065 P =
= 7639 KN = M,
8 =oo Mg

5. Substituting B, Py, By, in Bresler equation:

1 1 1 1
—_— =
Pn an Pny Pno

1 1 1 1

= + - = P, = 2420 KN
P, 39469 3437.7 7631.8 "

P, = ¢P, = 0.65- 2420 = 1573 KN
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Example
Design a rectangular tied column subjected to:

B, =1150 KN with e, =0.4m, and e, =0.2m
Take f, = 414 MPa ~ 60 ks, f; =28 MPa =~ 4 ksi

P, = 1150 KN

Solution: %/ /4
L. P S .. —y
7 el =04m

1. Select trial size along x — axis, e,, = 0.4 m

Assume h = 650 mm. x

2. Compute the ratio e/h:

ex_400_062
h 650

Assume I 25 for bars.

d—d 650—2-40—2-10—25

Y= A 650 = 0.81

3. Use interaction diagrams trying p, = 0.01:

Diagram A-9b (fory = 0.75).

P, P
Ph_B 470
Ag g
Diagram A-9c (fory = 0.9).
P, P
Ph B 7
Ag )

Use linear interpolation to compute the value for y = 0.81

oP, (0.78 = 0.72)
k] =0.81) =072 + (————=) (0.81 — 0.75) = 0.744
a, [oro ) *\09-075 )¢ )

PP _o7aq = B (1180107 b = 344.8

T _0744=2="__"_ 0. = b = 344.

4, 4, 650-b o

Take column dimensions: h = 650 mm, b =400 mm and p, = 0.01
4. Use interaction diagram A-9 to determine B, and P,, for the selected dimensions :
h =650 mm, b= 400mm, andp, = 0.01:

» For x direction h = 650 mm, e, = 400 mm.

e"—400—062 =0.81
noe50 oo YT
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Diagram A-9b (fory = 0.75).

P, P
PP _ B _ 7,
4y 4
Diagram A-9c (fory = 0.9).
P, P
PP _ B 7
4y 4

Use linear interpolation to compute the value for y = 0.81

Ag . ' 0.9 0.;5 ’ ' ' '
= _;4‘4, uy = . = 4-_

> For y direction b = 400 mm, e, = 200 mm.

ey_200_05

h 400
Assume J 25 for bars.

d—d’_400—2-40—2-10—25

= = 0.688
Y=7h 400
Diagram A-9a (fory = 0.6 ).
P, P
OB B o7
44 g
Diagram A-9b (fory = 0.75).
P, P
Pk _ A _ 0.83
4y Ay

Use linear interpolation to compute the value for y = 0.688

OP, 0.83 — 0.71 ,
. for (y = 0.688) = 0.71 + (W) (0.688 — 0.6) = 0.78 ksi
P _ogg,  p 2078650400, 0 s agg6 kN
a, % e 0.145 '

5. Determine B,, for the selected dimensions : h =650mm, b = 400mm,
pg = 0.01:
Bio = ¢B = ¢Ag[0'85f6‘,(1 - pg) + png] =
= 0.65-650-400[0.85-28(1 — 0.01) + 0.01-414]1073 = 4681.6 KN

6. Substituting B,,, B

wyr Buo in Bresler equation:

1.1 1
¢Pn Pux Puy Puo
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1 1 4 1 1
¢P, 1398.6 1334.1 4681.6

$P, = 799.4 KN < P, = 1150 KN - Not OK.

7. Try new dimensions h = 700 mm, b = 450 mm and Py = 0.015
8. Repeat the calculations using interaction diagram A-9 to determine P, and B, for
the selected dimensions: h = 700 mm, b = 450 mm, and pg = 0.015:

» For x direction h = 700 mm, e, = 400 mm.

ex_400_057
h 700

Assume I 25 for bars.

d—d’_700—2-40—2-10—25
h 700

Diagram A-9b (fory = 0.75).

y= =0.82

P, P
Ph B g3
4y Ay
Diagram A-9c (fory = 0.9).
P, P
Ph B o3
4y Ay

Use linear interpolation to compute the value for y = 0.82

il ( —082)—083+(0'93_0'83>(082 0.75) = 0.877 ksi
4, for (y=0. = 0. 09 =075 . . = 0. st
S _g77  p. = O877:700:450 0 9052 kN
A, W 0.145 a '

> For y direction b = 450 mm, e, = 200 mm.

ey_ZOO_O44
h 450

Assume I 25 for bars.
d—d’_450—2-40—2-10—25_072
h 450 o

y =
Diagram A-9a (fory = 0.6).

P, P
$hn _ B _ 0.85
Ag Ag
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Diagram A-9b (fory = 0.75).

B, P
Ph _ B 0.98
4y Ay
Use linear interpolation to compute the value fory = 0.72
¢P, 0.98 — 0.85 ]
$on = 0.72) = 0.85 (—) 0.72 — 0.6) = 0.954 k
a, [rv ) 07506/ ) St

¢Pn_0954 P _0.954-700 - 450
A, T ux = 0.145

g

1073 = 2072.5KN

9. Determine P,, for the selected dimensions : h =700mm, b =450mm, and
pg = 0.015:
P = ¢P = ¢Ag[0'85f6,(1 - pg) + png’] =
= 0.65-700-450[0.85-28(1 — 0.015) + 0.015-414]1073 = 6071.5 KN

10. Substituting Py, P,y, B, in Bresler equation:

1 1
$P, P @ Py
1 1 1 1
oP. 20725 19052 60715

$P, = 1186.7 KN > P, = 1150 KN - OK.

1
Pyuo

11. Select the reinforcement:

Age = pgAg = 0.015 - 700 - 450 = 4725 mm?

Take 4 @ 25 + 8 @ 22 with A; = 1963.5 + 3041.1 = 5004.6 mm? > Ay = 4725 mm?

1168.7 mm > 150 mm

425

85.3mm < 150 mm
450 mm

\ 8 J22

®

e

_
b

h =700mm -~

151



Reinforced Concrete | Dr. Nasr Abboushi

CHAPTER 7 SLENDER COLUMNS

7.1 INTRODUCTION

P
When a column bends or deflects laterally an amount 4, its axial load 1
will cause an increased column moment equal to PA. This moment will )M
be superimposed onto any moments already in the column. Should this
PA moment be of such magnitude as to reduce the axial load capacity of
the column significantly, the column will be referred to as a slender

column. Secondary

. . e . . . =PA
A column is said to be slender if its cross-sectional dimensions are small moment

compared with its length. The degree of slenderness is generally

expressed in terms of the slenderness ratio kl,/r, where [, is the

unsupported length of the member and 7 is the radius of gyration of its

cross section, equal to \/I/_A For square or circular members, the value §M
of r is the same about either axis; for other shapes r is smallest about P'

the minor principal axis, and it is generally this value that must be used

in determining the slenderness ratio of a freestanding column.

d rn=03h
] | n,=03b
R X4 41X X
Y I
vl y

Rectangular and circular sections of columns, with radius of gyration r.

For a rectangular section of width b and depth h, I, = bh3/12 and A = bh. Therefore,
Ty = \/I/_A =0.288h (or, approximately, 7, =0.3h). Similarly, I, = hb3/12 and
1, = 0.288 b (or, approximately, r, = 0.3 b). For a circular column with diameter D,
I, =1, = nD*/64 and A = mD?/4; therefore, r,, = 1;, = 0.25 D.

It has long been known that a member of great slenderness will collapse under a smaller
compression load than a stocky member with the same cross-sectional dimensions. When a
stocky member, say with kl,/r = 10 (e.g., a square column of length equal to about 3
times its cross-sectional dimension h), is loaded in axial compression, it will fail at the load
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P,, (PO = 0.85f /A, + Astfy), because at that load both concrete and steel are stressed to
their maximum carrying capacity and give way, respectively, by crushing and by yielding. If a
member with the same cross section has a slenderness ratio kl,,/r = 100 (e.g., a square
column hinged at both ends and of length equal to about 30 times its section dimension), it
may fail under an axial load equal to one-half or less of P,. In this case, collapse is caused by
buckling, i.e., by sudden lateral displacement of the member between its ends, with
consequent over-stressing of steel and concrete by the bending stresses that are
superimposed on the axial compressive stresses.

Most columns in practice are subjected to bending moments as well as axial loads, as was
made clear in Chapter 6. These moments produce lateral deflection of a member between
its ends and may also result in relative lateral displacement of joints. Associated with these
lateral displacements are secondary moments that add to the primary moments and that
may become very large for slender columns, leading to failure. A practical definition of a
slender column is one for which there is a significant reduction in axial load capacity because
of these secondary moments. In the development of AClI Code column provisions, for
example, any reduction greater than about 5% is considered significant, requiring
consideration of slenderness effects.

7.2 NONSWAY AND SWAY FRAMES.
For this discussion it is necessary to distinguish between frames without sidesway and those

with sidesway. In the ACI Code these are referred to respectively as nonsway (braced)
frames and sway (unbraced) frames.

’.:.";.:’3\" .’é ’ Vertical L Vertical L
i e N Load Loa
- HS"".'X a a
._.';",._M.ufu Z LTl :
AR il o iy r
:- 4'P‘ ':(‘ VE;tical | Vfrgcal |
PO LT Uil
Rt -« L -« L
W 0 )
LA L L a by a
S Y <+ d - d
/ .//.//‘/'/‘/////////////// /1777777777 777777777
Braced (Nonsway) Frame Unbraced (sway) Frame

You must realize that you will rarely find a frame that is completely braced against swaying
or one that is completely unbraced against swaying. Therefore, you are going to have to
decide which way to handle it.

The question may possibly be resolved by examining the lateral stiffness of the bracing
elements for the story in question. You may observe that a particular column is located in a
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story where there is such substantial lateral stiffness provided by bracing members, shear
walls, shear trusses, and so on that any lateral deflections occurring will be too small to
affect the strength of the column appreciably. You should realize while examining a
particular structure that there may be some nonsway stories and some sway stories.
If we cannot tell by inspection whether we have a nonsway frame or a sway frame, the Code
provides two ways of making a decision. First, in ACI Section 10.10.5.1, a story in a frame is
said to be a nonsway one if the increase in column end moments due to second-order
effects is 5% or less of the first-order end moments.
The second method presented by the Code for determining whether a particular frame is
braced or unbraced is given in the Code (10.10.5.2). If the value of the so-called stability
index which follows is < 0.05, the Commentary states that the frame may be classified as a
nonsway one.
0 =22 <05
Vuslc
where
Y. B, — total factored vertical load for all of the columns on the story in question,
A, — the elastically determined first-order lateral deflection due to V,, at the top of the
story in question with respect to the bottom of that story,
Vs — the total factored horizontal shear for the story in question,
[, — the height of a compression member in a frame measured from center to center of the
frame joints.
Despite these suggestions from the ACI, the individual designer is going to have to make
decisions as to what is adequate bracing and what is not, depending on the presence of
structural walls and other bracing items. For the average size reinforced concrete building,
load eccentricities and slenderness values will be small and frames will be considered to be
braced.

7.3 BUCKLING OF AXIALLY LOADED ELASTIC COLUMNS. THE EFFECTIVE COLUMN
LENGTH.

The basic information on the behavior of straight, concentrically loaded slender columns was
developed by Euler more than 200 years ago. In generalized form, it states that such a
member will fail by buckling at the critical load
m2El

e Gy
where
EI — flexural rigidity of column cross section,
(kl,) — effective length of the column.

. . . _ . .kl
It is seen that the buckling load decreases rapidly with increasing slenderness ratio 7“

The slenderness of columns is based on their geometry and on their lateral bracing. As their
slenderness increases, their bending stresses increase, and thus buckling may occur.
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Reinforced concrete columns generally have small slenderness ratios. As a result, they can
usually be designed as short columns without strength reductions due to slenderness.
The length used for calculating the slenderness ratio of a column, [, is its unsupported
length. This length is considered to be equal to the clear distance between slabs, beams, or
other members that provide lateral support to the column. If haunches or capitals are
present, the clear distance is measured from the bottoms of the capitals or haunches.

— = F 3

A
~ 3
~ N:
Top of the slab Top of the slab
y L \ ~a Y
y
I I X "‘”"" x
% é; 'y y"
/ —r O
Drop beam B
ol e
=
-3
?
Top of the slab ~
\ v |

To calculate the slenderness ratio of a particular column, it is necessary to estimate its
effective length. This is the distance between points of zero moment in the column (The
inflection points - IP). For this initial discussion it is assumed that no sidesway or joint
translation is possible. Sidesway or joint translation means that one or both ends of a
column can move laterally with respect to each other.

If there were such a thing as a perfectly pinned end column, its effective length would be its
supported length, as shown in Figure (a). The effective length factor k is the number that
must be multiplied by the column's unsupported length to obtain its effective length. For a
perfectly pinned end column, k = 1.0.

Columns with different end conditions have entirely different effective lengths. For instance,
if there were such a thing as a perfectly fixed end column, its points of inflection (or points of
zero moment) would occur at its one-fourth points, and its effective length would be [,,/2,
as shown in Figure (b). As a result, its k value would equal 0.5.
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(@) k=1

P ch
_£ l' e
757
in/ IP— ¥
IP—
1/2 1, 1> kl>1,/2 1,
IP—]
;"/4 P—/ 3
]
P, Fe
(b) k=1/2 (c) V2 <k<A1

Buckling and effective length of columns in braced frames

] IP
ll‘l‘
Ve 74 kluz
§re
|
/
/
[
/
/
/
lP\J
(d) k=2

21,

P
lu [y zu l"< kf,-,< =
G T
P, \ Fe
| \\ - (f) 1< k<oo
/‘\ —
\

\
|
I
k=1

Buckling and effective length of columns in unbraced frames
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7.4 EFFECTIVE LENGTH FACTOR — k

The preliminary procedure used for estimating effective lengths involves the use of the
alignment charts shown below. The chart of part (a) of the figure is applicable to braced
frames, whereas the one of part (b) is applicable to unbraced frames.
To use the alignment charts for a particular column, 1 factors are computed at each end of
the column. The Y factor at one end of the column equals

_ X E /L of columns at joint

~ Y E,L,/1, of beams at joint
(both in the plane of bending) where the lengths [. and [, are measured center-to-center of

the joints. Should one end of the column be pinned, ¥ is theoretically equal to o, and if
fixed, ¥ = 0. Since a perfectly fixed end is practically impossible to have, ¥ is usually taken
as 1.0 instead of 0 for assumed fixed ends. When column ends are supported by, but not
rigidly connected to a footing, Y is theoretically infinity, but usually is taken as about 10 for
practical design. One of the two i values is called 14 and the other is called 5. After these
values are computed, the effective length factor k is obtained by placing a straightedge
between Y and Y. The point where the straightedge crosses the middle nomograph is k.

FA Kk g FA g ¥g
[= = oo oo
50.0 =3 - 1.0 £ 50.0 22 ] = - oo
10.0 — 10.0 - / —
co 3 T = o 50.0 - 2007 F N 400 L 50.0
- i P . 30.0 - 5.0 — 30.0
3.0 — : — 3.0 20.0 — 4.0 — 20.0
2.0 — =+ — 2.0 - L
i 5 10.0 | L 10.0
— 08 90 3.0 90
8.0 — — 8.0
1.0 — — 1.0 7.0 — — 7.0
88 1 1 — 33 6.0 — — 6.0
0.7 — — 0.7 5.0 — — 5.0
0.6 — —o07 — 0.6 4.0 — 2.0 — 4.0
0.5 — — 0.5 - -
0.4 — 1 — 0.4 30 ] B 30
03 — 0.3 2.0 — 2.0
| < 1.5
0.2 — 06 — 0.2 7 i
. - 1.0 — L 1.0
0.1 — T — 0.1 . B
0 — —L o5 0 0 - 1.0 -0
(a) (b)
Nonsway Frames Sway Frames

¥ = ratio of Z(Elf{¢) of compression members to Z{E/£) of flexural
members in a plane at one end of a compression member

£ = span length of flexural member measured center to center of joints

Eftective Length tactors - k
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prr74
(A k g A k g
o
oo -]
50.0\1 - 1.0 't 50.0 b 200 e
10.0 - 10.0 100.0 — 10.0 - 100.0
3 T E 50.0 - 50.0
B 5.0 300 50 e
304~ —+09 30 2001 20 | 260
~— . -
204 ~~_t 2.0 1 A
& ™~ - 10.0 3.0 - 10.0 4
= 9.0 9.0
T o8 "~ ~ 8.0 — 8.0
'1).3— = 10 7.0 -70 :
28 il =09 6.0 6.0 |, — Colgmn being
0.7 - 0.7 5.0 50 designed
0.6 —+ 07 08 40 54 40
05— 05
4 F 3.0 _—30
e 1 04 ] — I &
0.3 03 20+ — 2.0 4
1 € I 15
02 0% o2
1 i 1.0 10
0.1+ + 0.1 ]
0 ——05 —-0 0 10 LD =
(a) Nonsway frames (b) Sway frames

The values of E.I. and E1, should be realistic for the state of loading immediately prior to
failure of the columns. Generally, at this stage of loading, the beams are extensively cracked
and the columns are uncracked or slightly cracked. Ideally, the values of EI should reflect the
degree of cracking and the actual reinforcement present. This is not practical, however,
because this information is not known at this stage of design. ACl Commentary Section
R10.10.6.3 states that the calculation of k shall be based on a 1 based on the E and I values
given in ACl Code Section 10.10.4. In most cases the I values given in AClI Code Section
10.10.4.1(b) are used for the evaluation of Y.

The stiffness of a structural member is equal to EI. The values of E and I for reinforced
concrete members can be estimated as follows:

e E, =0.043wl5/f, E; = 200 000 MPa

For normalweight concrete, E, shall be permitted to be takenas E. = 4700\/f,
Where, 1440 < w, < 2560 kg/m3 and f! in MPa .

e For reinforced concrete members, the moment of inertia I varies along the member,
depending on the degree of cracking and the percentage of reinforcement in the
section considered. To evaluate the factor iy, EI must be calculated for beams and
columns. For this purpose, I can be estimated as follows (10.10.4.1(b)):

Compression members:

Columns 0.70 Ig
Walls — Uncracked 0.70 Ig
— Cracked 0.35 Iy
Flexural members:
Beams 0.35 I,
Flat plates and flat slabs 0.25 1,
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Alternatively, the moments of inertia of compression and flexural members, I, shall be
permitted to be computed as follows:
Compression members:
A M P,

I= <0.8 +25 A_Z) (1 - ﬁ;l - 0.5P—:> I, < 08751,
where P, and M, shall be determined from the particular load combination under
consideration, or the combination of P, and M,, determined in the smallest value of I. I need
not be taken less than 0.351,.
Flexural members:

b
I =(0.1+25p) (1.2 -0.2 7”") I; <051,

where [; — the moment of inertia of the gross concrete section about the centroidal axis,
neglecting reinforcement.
p — ratio of A;/bd in cross section.

e The moment of inertia of T-beams should be based on the effective flange width
defined in Section 8.12.2. It is generally sufficiently accurate to take I; of a T-beam as
two times the I, of the web, 2(b,,h*/12).

e |f the factored moments and shears from an analysis based on the moment of inertia
of a wall, taken equal to 0.70 I, indicate that the wall will crack in flexure, based on
the modulus of rupture, the analysis should be repeated with I = 0.35 1, in those
stories where cracking is predicted using factored loads.

e For continuous flexural members, I shall be permitted to be taken as the average of
values obtained from the above equation for the critical positive and negative
moment sections. I need not be taken less than 0.25 I;.

e The cross-sectional dimensions and reinforcement ratio used in the above formulas
shall be within 10% of the dimensions and reinforcement ratio shown on the design
drawings or the stiffness evaluation shall be repeated.

e When sustained lateral loads are present, I for compression members shall be
divided by (1 + B45). The term B, shall be taken as the ratio of maximum factored
sustained shear within a story to the maximum factored shear in that story
associated with the same load combination, but shall not be taken greater than 1.0.

7.5 LIMITATION OF THE SLENDERNESS RATIO — (k—:“)

7.5.1. Nonsway (braced) frames:
The ACI Code, Section 10.10.1 recommends the following limitations between short and long
columns in braced (nonsway) frames:
1. The effect of slenderness may be neglected and the column may be designed as a
short column when
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kl, M,
—S34—12(—> <40
T M,
where M;and M, are the factored end moments of the column and M, > M;.

2. The ratio M, /M, is considered positive if the member is bent in single curvature and
negative for double curvature (see next figure).

M]b Mlb P
=

l M =Pe

P
Single curvature Doubile curvature P — Aeffect
M = P(e + A)
(a) (b) (c)

Single and double curvatures.

3. Theterm [34 —12 (%)] shall not be taken greater than 40.
2

4. If the factored column moments are zero or e = M, /P, < emin, the value of M

should be calculated using the minimum eccentricity given by AClI Code Section
10.10.6.5:

emin = (15 + 0.03h) where h inmm
M, = P,(15 + 0.03R)

The moment M,,;,, shall be considered about each axis of the column separately. The value

of k may be assumed to be equal to 1.0 for a braced frame unless it is calculated on the basis
of EI analysis.
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5. It shall be permitted to consider compression members braced against sidesway
when bracing elements have a total stiffness, resisting lateral movement of that
story, of at least 12 times the gross stiffness of the columns within the story.

7.5.2. Sway (unbraced) frames:
In compression members not braced against sidesway the effect of the slenderness ratio
may be neglected when

— <22
T

7.6 MOMENT-MAGNIFIER DESIGN METHOD

The first step in determining the design moments in
a long column is to determine whether the frame is

braced or unbraced against sidesway. If lateral
bracing elements, such as shear walls and shear
trusses, are provided or the columns have
substantial lateral stiffness, then the lateral

deflections produced are relatively small and their y
effect on the column strength is substantially low. It My | Pa
can be assumed that a story within a structure is
nonsway if the stability index
Q= % < 0.05
us*c

In general, compression members may be subjected
to lateral deflections that cause secondary

moments. If the secondary moment, M’, is added to
the applied moment on the column, M,, the final

moment is M = M, + M'. An approximate method (b)
for estimating the final moment M is to multiply the
applied moment M, by a factor called the magnifying moment factor §, which must be
equal to or greater than 1.0, or

Mpyax = 6M, and § = 1.0.
The moment M,, is obtained from the elastic structural analysis using factored loads, and it is
the maximum moment that acts on the column at either end or within the column if
transverse loadings are present.
If the P — A effect is taken into consideration, it becomes necessary to use a second-order
analysis to account for the nonlinear relationship between the load, lateral displacement,
and the moment. This is normally performed using computer programs. The ACI Code
permits the use of first-order analysis of columns. The AClI Code moment-magnifier design
method is a simplified approach for calculating the moment-magnifier factor in both braced
and unbraced frames.
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7.6.1. Magnified Moments in Nonsway Frames

The effect of slenderness ratio (krﬁ) in a compression member of a braced frame may be
. .kl My . . . ki .
ignored if — <34-12 (M_z)' as given in Section 7.5.1. If (7) is greater than

[34 —-12 (%)] then slenderness effect must be considered. The procedure for determining
2

the magnification factor 6, in nonsway frames can be summarized as follows (ACI Code,
Section 10.10.6):
1. Determine if the frame is braced against sidesway and find the unsupported length,
l,,, and the effective length factor, k (ACI Commentary Section R10.10.1 states that
the effective length factor, k, can be taken conservatively as 1.0 for columns in
nonsway frames).

2. Calculate the member stiffness EI, using the reasonably approximate equation
_ (0.2E1y + Ely.)

1+ ﬁdns

or the more simplified approximate equation
| 0.4E.1,
1+ ﬁdns

I, — gross moment of inertia of the section about the axis considered, neglecting A;.

I, — moment of inertia of the reinforcing steel

The term 4, shall be taken as the ratio of maximum factored axial sustained load to
maximum factored axial load associated with the same load combination, but shall not be
taken greater than 1.0.

_ 1.2 D (sustained) <

s ™ 12D+16L
Alternatively, EI shall be permitted to be computed using the value of I from equation for

compression members divided by (1 + Bgns)-
A M P,

I = (0.8 +25 A_Z> (1- 05 P—’:) I, < 08751,
I need not be taken less than 0.351;.
where
Ag — Total area of longitudinal reinforcement (mm?),
P, — Nominal axial strenght at zero eccentricity (N),
P, — Factored axial force (+ve for compression) (N),
M,, — Factored moment at section (N - mm),
h — thickness of member perpendicular to the axis of bending (mm).

3. Determine the Euler buckling load, P.:
T2El
ERNCRE
162



Reinforced Concrete | Dr. Nasr Abboushi

Use the values of EI, k and [, as calculated from steps 1 and 2.
However, the EI values given in ACI Code Sections 10.10.4 should not be used to compute

EI for use in Euler equation because those values are assumed to be average values for an
entire story in a frame and are intended for use in first- or second-order frame analyses.

4. Calculate the value of the factor C,, to be used in the equation of the moment-
magnifier factor. For braced members without transverse loads,

C —06+04M1
m_ . . M

2
where M; /M, is positive if the column is bent in single curvature, and negative if the

member is bent in double curvature. For members with transverse loads between supports,
C,n shall be taken as 1.0.

_____ l_.....tg _———
0.6 ~ Nonsway
— 0.4 frames

—0.2

(é -1.0 -0.5 0 +0.5 +1.0 (‘)

J M1?"M2 L
5. Calculate the moment magnifier factor 6,5:
C
Sps = —mp > 1.0
1——tu
0.75P.

where P, is the applied factored load and P, and C,, are as calculated previously.
If P, exceeds 0.75P., 8,5 will be negative, and the column would be unstable. Hence, if B,
exceeds 0.75P. the column cross section must be enlarged. Further, if §,,; exceeds 2.0,
strong consideration should be given to enlarging the column cross section, because
calculations for such columns are very sensitive to the assumptions being made.

6. Design the compression member using the axial factored load, P,, from the
conventional frame analysis and a magnified moment, M., computed as follows:
M, = 6,sM,
where M, is the larger factored end moment due to loads that result in no sidesway and
shall not be taken less than
M3 min = P, (15 + 0.03h)

about each axis separately, where 15 and h are in mm. For members in which M; i,
exceeds M,, the value of C,, shall either be taken equal to 1.0, or shall be based on the ratio
of the computed end moments, M; /M.
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7.6.2. Magnified Moments in Sway Frames
The effect of slenderness may be ignored in sway (unbraced) frames when % < 22. The

procedure for determining the magnification factor, J;, in sway (unbraced) frames may be
summarized as follows (ACI Code, Section 10.10.7):
1. Determine if the frame is unbraced against sidesway and find the unsupported length
[, and k, which can be obtained from the alignment charts (page 157).
2-4. Calculate EI, P., and C,, as given in section 7.6.1. Note that here will be used f g
instead of S4,s (to calculate I) which is the ratio of maximum factored sustained shear
within a story to the total factored shear in that story.
maximum factored sustained shear in the story
Pas = total factored shear in the story
5. Calculate the moment-magnifier factor, & using one of the following methods:

a. Direct P — A analysis:
As part of the moment magnification method for sway frames, AClI Code Section 10.10.7

permits the use of a direct calculation of moments using &, in the form
1

=—>
5 =152

1.0

where
_XP,A,
VLLSlC

If 85 calculated here exceeds 1.5, &5 shall be calculated using second-order elastic
analysis or using method (b).

Q

b. Moment Magnifier method

ACl Code Section 10.10.7 also allows the use of the traditional sway-frame moment
magnifier for computing the magnified sway moments

8 = > 1.0

1

__2P,

0.75) P.
where Y P, is the summation for all the factored vertical loads in a story and ). P. is the
summation for all sway-resisting columns in a story.
In most sway frames, the story shear is due to wind or seismic loads and hence is not
sustained, resulting in S45 = 0. The use of the summation terms in the previous equation for
& accounts for the fact that sway instability involves all the columns and bracing members

in the story.
If (1 — 0725%) is negative, the load on the frame, ) P,, exceeds the buckling load for the
. c

story, Y. P., indicating that the frame is unstable. A stiffer frame is required.
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6. Calculate the magnified end moments M; and M, at the ends of an individual
compression member, as follows:
M; = Myps + 6:Myg

My = Myys + 85 My

where My, and M, are the moments obtained from the no-sway condition, whereas M,
and M, are the moments obtained from the sway condition. If M, is greater than M; from
structural analysis, then the design magnified moment is

M = Maps + 85Mys

A separate stability check for sway frames, which was required in prior editions of the ACI
Code, is now covered by ACI Code Section 10.10.2.1: Total moment including second-order
effects in compression members, restraining beams, or other structural members shall not
exceed 1.4 times the moment due to first-order effects.

Analytical studies have shown that the probability of a stability failure increases when the
stability index, Q, exceeds 0.2. This is similar to the limit of 0.25 set by ASCE/SEI 7-10. Using a
value of 0.25 results in a secondary-to-primary moment ratio of 1.33, which is the basis for
the ACI Code limit of 1.4 for that ratio. If that limit is satisfied, a separate stability check is
not required.

The Commentary Section R10.10.2.1 gives the structural designer indications where to
consider stiffening the building sides for winds blowing, and thus, reduce the story drift
below 1/500 when needed.

Maximum Moment between the Ends of the Column. In most columns in sway frames, the
maximum moment will occur at one end of the column and will have the value given by M;
and M,. Occasionally, for very slender, highly loaded columns, the deflections of the column
can cause the maximum column moment to exceed the moment at one or both ends of the
column. The ACI Code Section 10.10.2.2 calls attention to this potential problem but does
not offer guidance. The ACI Commentary Section R.10.10.2.2 does suggest that this can be
accounted for in structural analysis by adding nodes along the length of the column.

This is a rare occurrence and prior editions of the ACI Code used the following equation to
identify columns that may have moments between the ends of the column that exceed the
moments at the ends.

l 35
7“ >
Py
fdAg
l . . .
If 7” exceeds the value given by 35/ ;;1‘ , there is a chance that the maximum moment on
cg

the column will exceed the larger end moment, M,. This would occur if M. was larger than
the end moments M; and M,. If M. < M,, the maximum design moment is at the end of the
column and is equal to M,. If M. = M,, the maximum design moment occurs between the
ends of the column and is equal to M..
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Example:

Design a tied column in a nonsway story to support the following loads:

Pp = 1000 KN and P, = 1250 KN.

The column’s dimensions as shown and its length in both directionsis 3.5 m
Take f; = 28 MPa,  f, = 414 MPa.

M
Solution: ' 1
i g
1. Check for slenderness: O S NS dooy E
kl,, M, i S
—S34—12<—> <40 ! Al
T Mz !
My . : v
(—) = 1.0 — braced frame with M,,;, 5
M, y
k = 1.0 — for columns in nonsway frames. - 550 mm >

ki,
—¥<34-12:10=22 <40

kb, 1035 29.17 > 22 — long column for bending about x — axis
r. 03-04

ﬁ = LSS = 21.21 < 22 — short column for bending about y — axis
r, 0.3-055

2. Calculate the minimum eccentricity e,;,;;, and the minimum moment M,,;,,:
emin = (15 + 0.03h) = 15 + 0.03 - 400 = 27 mm

P,=12-P,+1.6P, =1.2-1000 + 1.6 - 1250 = 3200 KN
Mypin = P, * €min = 3200 - 0.027 = 86.4 KN - m

3. Compute EI.
At this stage, the area of reinforcement is not known. Additional calculations are needed

before it is possible to compute EI = w, but EI = Q4Fly can be used.
1‘|'.8dns 1‘|'ﬁdns
E. = 47004/ f,' = 4700V28 = 24870 MPa
s bh3 B 550 - 4003 2933 - 10° A
912 12~ mm
1.2 D (sustained) 1.2-1000
dns = = = 0.375
1.2D+16L 3200
0.4E:l; 0.4-24870-2.933 )
= = = 21220 KN -m

El =
1+ Buns 1+ 0.375

4. Determine the Euler buckling load, P,.:
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w?El  m*-21220

= G = o 35y ~ 70966 KN

Fe
5. Calculate the moment magnifier factor §,:

M
C,=06+04—=06+04-1.0=1.0
M,

Sps = bm __ _ L0 =133>1.0
mETC B 3200 _ TE
0.75P, 0.75-17096.6

Normally, if §,, exceeds 1.75 to 2.0, a larger cross section should be selected.

The magnified eccentricity and moment:
e = epmin * Ons = 27 -1.33 = 35.91 mm

M, = 6,sM, =1.33-86.4=11491 KN -m
where M, = M,,;, =864 KN -m

The magnified moments are less than 1.4 times the first-order moments, as required by ACI
Code Section 10.10.2.1.
6. Select the column reinforcement. We will use the tied-column interaction diagrams
with bars in four faces (A-9).
e Compute the ratio e/h:

e 3591 0.09
h ™ 400
To construct the % line, take value 0.09 on (21:; axis and value 1.0 on % axis.

e Compute the ratioy:

Y — the ratio of the distance between the centers of the outside layers of bars to the overall
depth of the column. Assume & 25 for bars.

_d—d’_400—2-40—2-10—25

y=— 200 = 0.688

e Use interaction diagrams A-9a and A-9b to determine p, for the selected
dimensions : h =550mm, b =400mm. The interaction diagrams are

entered with

P, P 3200 - 103
& =L = x0.145=2.11ksi

, Ay 550400

Diagram A-9a (fory =0.6), p, = 0.013
Diagram A-9b (fory = 0.75), py = 0.012

0.013 — 0.012
0.75-0.6

py (y=0.688) = 0.013 — ( ) (0.688 — 0.6) = 0.0124 > p,;y = 0.01 — OK
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e Select the reinforcement:
Age = pgly = 0.0124 - 550 - 400 = 2728 mm?
Take 12 & 18 with A, = 3054 mm? > Ay, = 2728 mm?.

Note that e = 0.09h < 0.1 —the limit for 125 mm < 150 mm

concentrically loaded short column. Here g

. . . E A

we can solve this problem using equations S P m >
for the concentrically loaded short tied 9 g
column to calculate area of steel 1218 £
: g S
reinforcement Ag;: g <
< I

( o ®
Pumax = 0.8[0.85f; (A, — Ast) + Astcfy] v

¢ = 0.65 — for tied colum h = 550 mm

3200 x 103 = 0.65 - 0.8[0.85 - 28(550 - 400 — A,) + Ag, - 414]

Ay = 3200 x 10° 4675000 ! = 3790 2
st = 170.65-0.8 390.2 mm
A, 3790 -
Pg = A_ = m =0.0172 > Preq = 0.0124 —asitis expected.

g

Example:
Design a 6 m tall column to support an unfactored dead load of 400 KN and an unfactored

live load of 334 KN. The loads act at an eccentricity of 75 mm at the top and 50 mm at the

bottom, as shown.
Take f, = 28 MPa  and fy = 414 MPa.

Solution:

1. Compute the factored loads and moments.
Pp, =400 KN, P, =334 KN
P,=12-P,+16P, =12-400+1.6-334 =1014.4 KN
Miop = P, - e =1014.4-0.075 = 76.08 KN - m

My, = P,-e =1014.4-0.05=50.72KN -m
By definition, M, is the larger end moment in the column. Therefore, M, = 76.08 KN - m,

and M; = 50.72 KN - m. The ratio (%) is taken to be positive, because the column is bent
2
in single curvature. Thus

(Ml) 5072 0,667
M,) -
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£=1014.4 KN

i

—

M, = 76.08 KN-m

! 6m
!
l ' |
I M, = 50.72 KN-m
€=50mm
(a) Column. (by Moment (c) Deflected

diagram. shape.

2. Estimate the column size:
Assume the section as a square tied column 400 X 400 mm.

Instead of assumed value for column dimension (400 mm), it’s acceptable to assume
directly one dimension such as h = 500 mm and then determine the width b as was done
before in short column design. It should be noted that the section dimensions which were
derived for short columns will underestimate the required sizes of slender columns.

3. Check for slenderness: a column in a nonsway frame is short if

M,

klu<34 12( > < 40
r M -

2

k = 1.0 — because the column is pinended.

r=0.3h

ki,
—* <3412 0.667 = 26 < 40

kl, 1.0-6

— =03.04- 50 > 26 — long column in both directions

4. Check whether the moments are less than the minimum

The minimum eccentricity e,,i,:
emin = (15 4+ 0.03h) = 15+ 0.03-400 = 27 mm

erop = 75 mMm

epor = 50 mm} > emin = 27 mm

Because the maximum end eccentricity exceeds this, design for the moments from step 1.
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5. Compute EI.
At this stage, the area of reinforcement is not known. Additional calculations are needed

before it is possible to compute EI = w, but EI = Q4Fly can be used.
1"‘Bdns 1+Bdns
E. = 47004/ f," = 4700V 28 = 24870 MPa
I, = bh” = 400° =2.133-10° 4
9 12 T 12~ mm
1.2 D (sustained) 1.2-400
dns = = = 0.473
1.2D+16L 1014.4
[ = 04E:l;, 0.4-24870-2.133 14405 KN - m?
1+ Bae | 1+0473 m
6. Determine the Euler buckling load, P.:
m?El  m?-14405
P. = 3949.2 KN

~(kl)? (1.0-6)2

7. Calculate the moment magnifier factor 6,5:

M
C,, = 0.6+ o.zxﬁ1 =0.6+0.4-0.667 = 0.867
2

s o Cm _ 0.867 e
R A To1a4  — 132>10

S /N N &L
0.75P, 0.75-3949.2

Normally, if 8,5 exceeds 1.75 to 2.0, a larger cross section should be selected.
The magnified eccentricity and moment:
€ctop = Ons * €top = 1.32-75 =99 mm

M, = 8,M, = 1.32-76.08 = 100.43 KN - m

The magnified moments are less than 1.4 times the first-order moments, as required by ACI
Code Section 10.10.2.1.

8. Select the column reinforcement. We will use the tied-column interaction diagrams
with bars in two faces (A-6).

e Compute theratioe/h:
C 0248~ 025
h™ 400 T T
e .. M, . % .
To construct the - line, take value 0.25 on - —=" axis and value 1.0 on -~ axis.

e Compute the ratioy:
Y — the ratio of the distance between the centers of the outside layers of bars to the overall
depth of the column. Assume & 25 for bars.
_d—d’_400—2-40—2-10—25

y=— 200 = 0.688
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e Use interaction diagrams A-6a and A-6b to determine p, for the selected

dimensions : h = b = 400 mm. The interaction diagrams are entered with
¢P, P, 1014.4-103 )
—=—=————x0.145=0919 &k

A, A, 4002 °

Diagram A-6a (fory = 0.6), pg < pmin = 0.01

Diagram A-6b (fory = 0.75), pg < pmin = 0.01

From both diagrams A-6a and A-6b the required value for p is less than 0.01. Therefore, to
satisfy the minimum column longitudinal-reinforcement ratio, use p; = pin = 0.01.

e Select the reinforcement:
Age = pgAgy = 0.01-400-400 = 1600 mm?

Take 6 @ 20 with A, = 1885 mm? > A, = 1600 mm?.

_ _ _ o 400 mm 620
This section design would be very conservative if we
were designing a short column, but the slenderness of
the column has required the use of this larger section. |
400 mm

A
L

Example:

Design of a slender column in a nonsway frame. The figure below shows an elevation view of
a multistory concrete frame building, with 120 cm wide X 30 cm deep beams on all
column lines, carrying two-way solid slab floors and roof. The clear height of the columns is
3.95 m. Interior columns are tentatively dimensioned at 450 X 450 mm, and exterior
columns at 400 X 400 mm. The frame is effectively braced against sway by stair and
elevator shafts having concrete walls that are monolithic with the floors, located in the
building corners (not shown in the figure). The structure will be subjected to vertical dead
and live loads. Trial calculations by first-order analysis indicate that the pattern of live
loading shown in the figure, with full load distribution on roof and upper floors and a
checkerboard pattern adjacent to column C3, produces maximum moments with single
curvature in that column, at nearly maximum axial load. Dead loads act on all spans. Service
load values of dead and live load axial force and moments for the typical interior column C3
are as follows:

Dead load Live load
P = 1000 KN P = 750 KN
Miop, = 3KN-m Mo, = 145KN-m
My, = —3KN-m My, = 135KN-m

The column is subjected to double curvature under dead load alone and single curvature
under live load.
Design column C3, using ACI magnifier method. Use f; =28 MPa and f, = 414 MPa.

171



Reinforced Concrete | Dr. Nasr Abboushi

25.5m ‘——'I

£
[Tg}
o
+ 3
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o
o 2
S
7]
© 1
L 7777 7777
A F
L 5baysat 7.3m=36.5m X
Solution:

1. The column will first be designed as a short column, assuming no slenderness effect.
With the application of usual load factors,
P,=12-Ppb+16P, =12-1000+1.6-750 = 2400 KN

My=12-Mp+16M;, =12-3+1.6-145=235.6 KN-m

2. Try square column 450 X 450 mm. We will use the tied-column interaction diagrams
with bars in four faces (A-9).
e Compute theratioe/h:

M, 235.6
e—P—u—m—98.2mm
e 982
7= 250 = 0.218 = 0.22
To construct the % line, take value 0.22 on (Zf; axis and value 1.0 on % axis.

e Compute the ratioy:
Y — the ratio of the distance between the centers of the outside layers of bars to the overall
depth of the column. Assume & 25 for bars.

d—d'_450—2-40—2-10—25

Y= A 450 =0.722
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e Use interaction diagram A-9a (y = 0.6) and A-9b (y = 0.75) to determine p,
for the selected dimensions : h = b = 450 mm. The interaction diagrams are
entered with

3
Diagram A-9a (fory = 0.6), pg = 0.027
Diagram A-9b (fory = 0.75), py = 0.02

0.027 — 0.02

pg (y =0.722) = 0.027 - ( 075 - 06

>(0.722 —0.6) = 0.021 > p,;p, = 0.01 — OK
pg = 0.021 is low enough that an increase in steel area could be made, if necessary, to allow
for slenderness, and the 450 X 450 mm concrete dimensions will be retained.

Note: the previous step for short column design was done to show the slenderness effect on
the reinforcement ration in the end of this example.

3. Check for slenderness: a column in a nonsway frame is short if
kL, M,
—<34-12 (—

M

) <40
T

2
M, =12-3+1.6-145=2358KN -m

M;=12-(-3)+16-135=2124KN-m

34 — 12 (Ml) =34—-12 (212'4) =23.19 < 40
M, 2358/ 77

r=03h=0.3-045=0.135m
_ X E/l of columns at joint
~ Y E,l,/l, of beams at joint
Because E. is the same for column and beams (E, = E}), it will be canceled in the stiffness

calculations. For this step:

* the column moment of inertia will be

bh3 0.45%
Ic = 0.7Ig = OI7.E= 0.7 12

* The moment of inertia of T-beams should be based on the effective flange

=2.392-103m*

width b, defined in Section 8.12.2. It is generally sufficiently accurate to take I
of a T-beam as two times the I, of the web, 2(b,,h3/12). Thus, the moment of
inertia of a flanged section will be

3 1.2-0.33

by, h 2-0. L
Iy =0.35[;= 0352 =—-=0352"~———=189-10"m

Rotational restraint factors at the top and bottom of column C3 are the same and are
2.392-107%  2.392-1073

I./1 + 1.126 - 1073
. _Xl/le 375 _ 425 _ _ _—217
Xl/l, 1.89-10 189-10 = 5178 10~
7.3 7.3

173



Reinforced Concrete | Dr. Nasr Abboushi

Column (up)
YA K ¥B
Beam (left) | ] Beam (right) oo /= |~ k =0.87
100 3 T e
- 50 3 5.0
Column (below) 3.0 =108 3.0
2.0 — -+ — 2.0
1 —1—0.8
Ku 08739 _ 5545 > 23.19 E =i
r 0135 77 ' 0.7 - T 07
The column is long and the slenderness must be E: ] =% :2;2
considered. i + el
0.3 — —03
0.2 i S B — 0.2
4. Check whether the moments are less . s
L. 0.1 — + — 0.1
than the minimum.
The minimum eccentricity e,,;;n: 0 05 o
emin = (15 + 0.03h) = 15 + 0.03 - 450 = )
Nonsway Frames
= 28.5mm

My min = Py * €min = 2400+ 0.0285 = 68.4 KN -m < M, = 2358 KN - m

The design will be done for the moments from step 3.

5. Compute EI.
E. = 47004/ f," = 4700V 28 = 24870 MPa

I, = bh® = 4501 =3.417-10° 4
9712 T 12 mm
_ 1.2 D (sustained) _1.2-1000 _
ans = 12D+16L 2400
0.4E.l, 0.4-24870-3.417
I = = = 22662 KN - m?
1+ Bans 1+40.5
6. Determine the Euler buckling load, P.:
m2El T2 - 22662
= 18939.4 KN

P = =
¢ (klp? (0.87-3.95)2
7. Calculate the moment magnifier factor 6,,:
M; 212.4
() = (z353) =9
M, 235.8

M
Cn =006+ 0'4ﬁ1 =06+04-09=0.96
2
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5, = Cm 0.96 =116 > 1.0
ns—l_ Pu —1_ 3400 = 1. > 1.
0.75P. 0.75 - 18939.4

The magnified eccentricity and moment:

M, =6,sM, =1.16-235.8 =273.5KN-m
The magnified moments are less than 1.4 times the first-order moments, as required by ACI
Code Section 10.10.2.1.

8. Select the column reinforcement. We will use the tied-column interaction diagrams
with bars in four faces (A-9).
e Compute the ratio e/h:

P, 2400
e 114
n= 50 0%

e, Mn . Pn __.
To construct the - line, take value 0.25 on ih; axis and value 1.0 on % axis.

e Compute the ratioy:
y=0.722
e Use interaction diagram A-9a (y = 0.6) and A-9b (y = 0.75) to determine p,
for the selected dimensions : h = b = 450 mm. The interaction diagrams are

entered with

¢P, P, 2400 -10°
= X 0.145 = 1.72 ksi
A, 4502

Ay
Diagram A-9a (fory =0.6), p,; = 0.034
Diagram A-9b (fory = 0.75), p; = 0.027

= 0722 — 0.034 (0.034 —0.027
Pg Y =T - 0.75 — 0.6

It is seen that the required reinforcement ratio is increased from 0.021 to 0.0283 because of

)(0.722 —0.6) = 0.0283 > pin = 0.01 - 0K

slenderness.
e Select the reinforcement:
Ag = pgAg = 0.0283 - 450 - 450 = 5730.75 mm?

Take 16 & 22 with A, = 6081.6 mm? > A, = 5730.75 mm?2.

e Design of Ties:
Use ties @ 10 with spacing of ties shall not exceed the smallest of:

4. 48 times the tie diameter,
5. 16 times the longitudinal bar diameter,

6. the least dimension of the column.
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e Check for code requirements: Y
7. Clear spacing between longitudinal bars:
8. Gross reinforcement ratio, 0.01 < pg < 0.08

9. Number of bars.

450 mm

10. Minimum tie diameter.

11. Spacing of ties.

12. Arrangement of ties.

Example:

The column section in the figure carries an axial load
Pp = 600 KN and a moment M, = 155 KN - m due to dead
load and an axial load P, =490 KN and a moment
M; = 125 KN - m due to live load. The column is part of a
frame that is braced against sidesway and bent in single
curvature about its major axis. The unsupported length of the
column is [, = 5.8 m and the moments at both ends of the
column are equal. Check the adequacy of the column using
f¢ =28MPa and f, =414 MPa.

Solution:

1. Compute the factored loads and moments.
P, = 600 KN, Mp =155KN -m
P, =490 KN, M; =125KN-m

450 mm

I\
64—?-@ e e o o

; 4 28

550 mm

|| 4228,

.1[64 mm

e— 350 MM —=

P,=12-P,+1.6P, =1.2-600+ 1.6-490 = 1504 KN
M,=12-M,+16M, =12-155+1.6-125 = 386 KN -m

My 386 _
¢ =, T 1504 cOomm
M,

M, =M, =386KN-m = =
M,

1 (+ve for single curvature)

2. Check for slenderness: a column in a nonsway frame is short if

M,

klu<34 12( > <40
r M -

2

Assume k = 1.0 — for columns in nonsway frames.
r=03h=03-0.55=0.165m. [, =58m

M,
34_12(V)=34_12.1=22<40

2
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My 158 e s0-1 l
= 01es ~ 3> ong column.
Slenderness effect must be considered.
3. Compute EI.
(0.2EcIg+Eslse)

can be used.
1+Bdns

The area of reinforcement is known. So the equation EI =

E, = 47004/ f." = 470028 = 24870 MPa
E, = 200 000 MPa

- bh® _ 350-550°
912 12
AS(4@28) = 24‘63 mmz

= 4.852-10° mm*

d—d'\ 550 — 2 - 647 o
Iie = 2+ Agtazsy - | —5— =2-2463-(—) = 0.2193 - 10° mm

2 2
_ 12D (sustained) 1.2-600 0.479
Pans =43 p 7160 ~ 1508
0.2E.1, + EI 0.2-24870-4.852 + 200 000-0.2193
:( €9 SS@):( ):45973KNm2
1+ Bans 1+ 0.479
4. Determine the Euler buckling load, P.:
b n?El  m?-45973 13488 KN
€7 (kl)? (1.0-58)%
5. Calculate the moment magnifier factor 6,5:
M
Cp=06+04—=06+04-1=10
M,
§pg = — = . = 1.175 > 1.0
ns—l_ P, —1_ 1504 = 1. > 1.
0.75P. 0.75-13488

6. Determine the balanced load and balanced eccentricity e,.

_ (0 d—( 090 )486—2876
@ =\600+7,)" = \600 +414/ "7 T 4O

ap = Bic, = 0.85-287.6 = 244.4 mm
C.=0.85f/ab = 0.85-28-244.4-350-10"3 = 2035.9 KN,
T = Asf, = 2463 -414-107% = 1019.7 KN

Check if compression steel yields

287.6 — 64
fs =600 (W) = 466.5 MPa > f, = 414 MPa

177



Reinforced Concrete | Dr. Nasr Abboushi

Compression steel yields: i 1
fi = f, = 414 MPa 0 : .
¢, = A4(f, — 0.85 ) = @z i @ -
— 2463(414 — 0.85-28) - 10~% = . 1Oz i
=961.1 KN ; &"
Py=C.+C—T=
= 2035.9 + 961.1 — 1019.7 = . d-d=422mm | d]|=64mm
= 1977.3 KN < d =486 mm .
For rotational equilibrium about the B h = 550 mm .
plastic centroid
h a h e —¢ e Cp = 287.6mm
Pty = Ce(5-5) + G5 ) + T~
+T (ﬁ - d')
2
1977.3 - ¢, = 2035.9 (52E - 242&) + £ &y £ru = 0.003

e, = 368.7 mm p
550 g i
+961.1 (T — 64) +

550
+1019.7 (2= - 64

/\/i muumﬁmﬁmx

"ﬂ<__

729034.3 ,
= = 0.85 f
ép 19773 368.7 mm I |
o I [of
_ap = 2444 mm
7. Calculate the magnified D -

eccentricity and the design force P,.
e, =05 e =1175-256.6 = 301.5mm

e. = 301.5 mm < e, = 368.7 mm — the section is Compression-controlled. ¢ = 0.65

P, 1504
Pn =$=m=2314KN
8. Determine the nominal load strength of the section using e = 301.5 mm. Here we
can solve this problem as a statics problem as in sections (6.8, 6.9) to determine B,,
or using approximate formulas to calculate P,.
The section is compression-controlled with symmetrical reinforcement. To determine

nominal load strength B,, we will use Whitney formula:

f¢ N Pgfy
9|73 2
BE HE)+
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Ay = bh =350-550 = 192500 mm?

2 22463
P =4, ~ 192500

_d_486_

hT550

_d—d'_550-2:40-2-10-28 _
e T 550 -

28 0.026 - 414
P, = 192500 +107% = 2500.7 KN

_I_
(5s97) (556) + 118 (5767) (Css0) +1
% = 2314 KN < P, = 2500.7 KN

The section is adequate enough.

Example:

The frame which carries a total uniform factored gravity load of 50 KN/m and a horizontal
factored wind load at joint f, is unbraced in its own plane. The wind load in not a sustained
load. Determine the axial load and moment for which coulmn must be designed. The
dimensions of rectangular cross sections of beams and columns are given.

Take f; = 28 MPa and f, = 414 MPa.

< <
Wu — 40 KN \ 4 vV V Yy VN A \ 4 vV V Vv vV V y vV Vv \ 4 A A A y
ﬂﬁ i_ ................................ R e — __________i
|| f <« ' < i
! c C !
5 A Ll oA £ Al
M I I
°l A LA a M
. o .
! !
| |

v

200 mm

_300mm _

500 mm

<

<
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A,=21mm
w, = 50KN/m
W, = 40 KNS e vd
l“ ~ - —— [ - =
I ~ ~ -~ - - - - - l = — o = -
I | I
I I I
I | /
| /
a b S CS
Deflected frame shape from all loads. Frame analysis by first-order computer program.
w, =50KN/m
f Yy V. V. V. V¥V V¥V V VY VvV VY VvV vVvyv v Yy V.V V. V. VY VY d
/] e N
168.4 KN -m 168.4 KN -m
48.1 KN 48.1 KN
> Ay .
/ A A

181.6 KN 436.8 KN 181.6 KN
Support reactions and end moments produced by gravity loads.
W, =40KN f e
s A N ¥ | <
385KN-m 629KN-m 385 KN -m

a%(_

8.75 KN

11 KN

Support reactions and end moments produced by lateral wind loads.
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w, =50KN/m
W'U- = 40 KNV Y V V \ y v V.V VeEy VvV V V Yy V. V.V Y d
/N A A
1299 KN -m 629KN-m 2069 KN - m
371 KN a b 17.97 KN c 59.1 KN
A / A
172.85 KN 436.8 KN 190.35 KN

Support reactions and end moments produced by both gravity and lateral wind loads.

Solution:

1. The frame is unbraced against sidesway, the stability index

P, A
= 254 < 0.05
Vuslc
(172.85 + 436.8 + 190.35) - 0.021
Q = 70 35 =0.12 > 0.05

The frame is unbraced as given.

2. Check for slenderness for column “cd”: a column in a sway frame is short if

LI
T

r=03h=0.3-0.25=0.075m. [, =3.25m
_ XE./l of columns at joint
~ Y E,L,/1, of beams at joint
Because E. is the same for column and beams (E. = E}), it will be canceled in the stiffness

calculations. For this step:
* the column moment of inertia will be

bh3 0.3-0.253 44
Ic = 07Ig =0.7" E = 07T =2.734-10 m
* the beams moment of inertia will be
bh3 0.3-0.53
Ib = 03519 =0.35" E =0.35" T = 1.094 - 10_3 m4

Rotational restraint factors at the top and bottom of column "cd" are:
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Zl_c 2.734-107*

ctomy = e _ 35 _ 7.8125-107% 0.57
Yalattop) = 7" =7594-103 ~ 1.3675-10%
L, 8
Yg(at bottom) = o — pin end.
YA K ¥8
Beam (left) S Vi -
800 2007 F 400 /500
30.0 — —T—50 / — 30.0
20.0 — —— / — 20.0
Column (below) i % )/ /

10.0 —+-130 /l K~ 10.0

From alignment chart k = 2.2 'y im T/ =

K, _22:325 o0 . 60 [ 60

The column is long and the slenderness must be o] . [

considered. 20 / 1 20

3. Compute EI.
The area of reinforcement is not known. So the

—1.0

equation EI = 0%Fclg can be used.
1+B4s 3 (g)
E. = 4700,/f.’ = 470028 = 24870 MPa PRI
Bas = 0 — since the wind loads act for a short time period.
I l gy = 2 3002507 g 109 e
y(for column cd) = 7 - 1 =0. mm
0.4E.1, 0.4-24870-0.391
I = = = 3889.7 KN - m?
1+ Bas 1+0
4. Determine the Euler buckling load, P.:
For columns cd, af:
b= m?El  m?-3889.7 751 KN
€ (kl)?  (22-3.25)2
For column be:
I l be) = b’ = 3007 =0.675-10° 4
g (for column be) = 7 -1 -0 mm
0.4E.l, 0.4-24870-0.675
I = = = 6715 KN - m?
1+ Bas 1+0

Determine the effective length factor k for column be:
_ X E./l of columns at joint

~ Y E,l,/l, of beams at joint
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* the column moment of inertia will be

I.=0.71, = 0.7 bh’ —070'34—4725 10™* m*
R R VI m
* the beams moment of inertia will be
I, = 0351 = 035- 2 — 0352595 _ ) 0941073 m#
A 12 m
Rotational restraint factors at the top and bottom of column "be" are:
I 4.725-107*
. R — _135:107
Yalattor) = =7 =502 103 . 1.004- 102 ~ 2735104 -
27, g 8
b
Yg(at bottom) = oo — pin end.
YA K ¥B
Beam (left) Beam (Right) e _ Vi e
|:| |:| -y in B 3 C o
50.0 — -10.0 — 50.0
30.0 ——50 ,/ 300
20.0 — —— — 20.0
Column (below) - Tr* . .
10.0 | 4130,/ L 10.0
From alignment chart k = 2.17 50 I/ o
p _ TEL_ w6715 &0 ] &0
“T LT 2173252 T HE A
30 — // 1 - 3.0
5. Calculate the moment magnifier factor d;: - __ S I ;2.0
»B,=172.85+436.84+ 190.35 =800 KN 1l T 1
Y P =751+ 13325+ 751 = 28345 KN o, 1 - 10
1 1 1 1 3
0.75) P. 0.75-2834.5
(b)
Sway Frames

6. The magnified moment at the top of the column cd:
M, = Mypg + 6sMys

M,,s = 168.4 KN - m — end top moment due to gravity loads only (nhonsway condition).

M,, = 38.5 KN - m — end top moment due to lateral wind loads only (sway condition).

M, =168.4+1.6-385=230KN-m

The magnified moments are less than 1.4 times the first-order moments, as required by ACI

Code Section 10.10.2.1.

7. Check whether the moments are less than the minimum M, < M, ,,,;.:

The minimum eccentricity e,,i,:
emin = 15+ 0.03h = 15+ 0.03 - 250 = 22.5mm

M min = P, - emin = 190.35-0.0225 =43 KN -m
M, =230 KN -m > M, iy =43 KN -m
Therefore M, p,;,, does not control.
183
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8. Check to verify that the maximum moment does no occur between ends of column:

b 35
T Pu
féAy
L, 325 35
S e = 433 < =116.3

"~ 0.3-0.25 190.35 - 103
\JZ8 - 300 - 250

then, maximum moment envelops at top of column.

9. Design column cd for M, = M, = 230 KN -mand P, = 190.35 KN.
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